Maa Shakumbhari University, Saharanpur

Syllabus of M.Sc. Botany (CBCS) (B.Sc. in Research- Botany)

(As per the Guidelines of U.P. Government according to National Education Policy (NEP) - 2020 w.e.f. Session 2023-2024)

Members fr	rom the	Board o	of Studies	(BOS):
------------	---------	---------	------------	---------------

S.No.	Name	Signature
1.	Prof. Sanjeev Kumar, Department of Botany, D.A.V. (P.G.) College, Muzaffarnagar (Convener)	
2.	Prof. Ritu Agarwal, Department of Botany, M.S. College, Saharanpur (Member)	
3.	Dr. Rakesh Kumar, Department of Botany, VSP Govt. (P.G.)College,Kairana, Shamli (Member)	
4.	Dr. Yogendra Kumar, Department of Botany, Govt. Degree College Nanauta, Saharanpur (Member)	
5	Prof. Rup Narayan, Department of Botany, CCSU, Meerut (External Expert)	
6	Prof. Alok Srivastava, Department of Plant Science, MJPRU, Bareilly (External Expert)	

Subject Prerequisites: Students must have passes Bachelor of Science in Botany (or Botany as one of the subjects)/Plant Sciences/Biosciences/Life Sciences from any recognized University equivalent with 55% aggregate.

Course Structure: The courses will be based on Choice Based Credit System (CBCS) structure developed by the University. There will be four compulsory or elective core courses of Botany in each semester. Apart from these, one minor elective course of other faculty is to be chosen by a student in the first year of M.Sc. (Botany). In each semester, there will be one research project of 04 credits.

Programme (M. Sc.) Objectives:

This programme has been designed to train and enable students to understand the relationship between science and society as well as logical, scientific and ethical issues related to science. In addition to this, the students will be able to think critically for the formulation of hypotheses and experimental designing based on the scientific method, which will make the students readily employable in various streams of teaching, research, civil services and in industries.

Programme Specific Outcomes (PSOs): After completing M.Sc. (with Botany), the following will be the PSOs

PSO-1: It is expected that after successfully completing M.Sc. Botany, students will develop deeper theoretical & Practical knowledge of different branches of Botany like Phytotecniques, Plant taxonomy, Anatomy, Mycology, Microbiology, Physiology, Biochemistry, Cell biology, Genetics, Molecular biology, Medicinal Botany, Pharmacognosy, Environmental issues etc, making them capable of understanding the societal, environmental issues, demands and their solutions.

PSO-2: This program has a strong theoretical basis that will help students in evolutionary relationship of lower and higher plants by using the key characters which is expected from a student of Botany to support the other branches of knowledge related to plants.

PSO-3: Many of the courses in the programme have been carefully designed that will help the students for qualifying competitive exams like IAS, IFS, CSIR NET, SET, TGT, PGT and to write research proposals for grants.

PSO-4: Continuous internal assessment provides ample opportunity to the students for improvement after every evaluation. Seminar and field visits system grooms the personality of the students and enables them to present oneself with confidence, develop a reasonably well compiled content and discuss. Assignments enable the students to compile the solutions of the given problems with optimal discussion.

PSO-5: In each semester of the programme, each student is given research project of their own choice to allow students to understand various steps of solving a research problem. Thus, this programme will help to develop research aptitude at PG level with identification of gaps in knowledge and relevance of their solutions for the society.

PSO-6: The student completing the course will be capable of executing research projects

Examination Pattern

Internal Examination

- 1. One written Test of 10 Marks +5 Marks Quiz).
- 2. Five Marks for Class Seminar and 5 Marks of Assignment

External Examination: Written Examination of 75 Marks of 3 Hours Duration.

External Examination Pattern

Unit-I: Attempt all 10 questions. Each question carries 2 Marks.Unit-II: Attempt any Five out of eight. Each question carries 5 Marks.Unit-III: Attempt any Three out of Five questions. Each question carries 10 Marks.

Year	Semester	Course Code	Course Title	Core Compulsory/ Elective/Value Added	Theory/ Practical/ Project	Credits	Internal Marks	External Marks (Min Marks)	Total Marks	Minimum Marks (Int+Ext)	Teaching Hours
		0720401	Diversity of Algae & Bryophytes	Core Compulsory	Theory	4	25	75(25)	100	40	60
		0720402	Diversity of Pteridophytes, Gymnosperms & Paleobotany	Core Compulsory	Theory	4	25	75(25)	100	40	60
	lester-I	0720403	Morphology and Taxonomy of Angiosperms	Core Compulsory	Theory	4	25	75(25)	100	40	60
	20/ Sem	0720404	Biology and diversity of Microbes	Core Compulsory	Theory	4	25	75(25)	100	40	60
	EP-202	0720480	Practical Lab (Based on the contents of Theory Courses)	Core Compulsory	Practical	4	25	75(25)	100	40	60
	Semester- VII as per NEP-2020/ Semester-I	0720460	Botanical Excursion /Research Project-I (Submission of report & Specimen)	Core Compulsory	Project	4	25	75(30)	100	40	60
ar-I	er- V		Any One of the following:	Minor-Elective							
Year-4 as per NEP-2020/Year-I	Semest		(i)Wonders of Plants (ii)Bio-fertilizers	& Value added (for other faculty)	Theory	4	25	75(25)	100	40	60
2-20	•••			Core							
NE		0820401	Genetics & Plant Breeding	Compulsory	Theory	4	25	75(25)	100	40	60
as per		0820402	Cell and Molecular Biology	Core Compulsory	Theory	4	25	75(25)	100	40	60
/ear-4	ter-II	0820403	Ecology and Phytogeography	Core Compulsory	Theory	4	25	75(25)	100	40	60
	as per NEP-2020/ Semester-II	0820404	Any One of the following: (i) Fungi and Plant Pathology	Core Compulsory	Theory	4	25	75(25)	100	40	60
	NEP-2(0820405	(ii) Anatomy and Embryology of Angiosperms		Theory	4	25	75(25)	100	40	60
	s per l	0820480	Practical Lab (Based on the contents of Theory Courses)	Core Compulsory	Practical	4	25	75(25)	100	40	60
	3 III V-	0820465	Industrial Training/Research Project-II	Core Compulsory	Project	4	25	75(30)	100	40	60
	Semester-VIII		Project-I + Project-II	Core Compulsory	Viva- Voce	8	50	150(60)	200	80	120
	Sei	0820450	Herbal Products	Minor-Elective & Value added (for other faculty)	Theory	4	25	75(25)	100	40	60

LIST OF PAPERS IN ALL FOUR SEMESTERS

		0920401	Plant soil water relations, Growth and Development	Core Compulsory	Theory	4	25	75(25)	100	40	60
	ter-III	0920402	Photochemistry and Metabolism	Core Compulsory	Theory	4	25	75(25)	100	40	60
	Semester-IX as per NEP-2020/ Semester-III	0920403	Any Two of the following: (i) Stress Physiology		Theory	4	25	75(25)	100	40	60
	EP-202		(ii) Genetic Engineering	Core Compulsory	Theory	4	25	75(25)	100	40	60
	per NI		(iii) Biodiversity, conservation and Plant resources		Theory	4	25	75(25)	100	40	60
	IX as	0920406	(iv) Pharmacognosy		Theory	4	25	75(25)	100	40	60
r-II	nester-	0920480	Practical Lab (based on the contents of Theory Courses)	Core Compulsory	Practical	4	25	75(25)	100	40	60
/Yea	Ser	0920461	Research Project-III	Core Compulsory	Project	4	25	75(30)	100	40	60
Year-5 as per NEP-2020/ Year-II		1020401	Any Four of the following: (i)Biotechnology & Plant Tissue Culture	Elective		4	25	75(25)	100	40	60
5 as per]		1020402	(ii) Bio entrepreneurship and Innovation		Theory	4	25	75(25)	100	40	60
Year	Ν	1020403	(iii) r-DNA Technology		Theory	4	25	75(25)	100	40	60
	as per NEP-2020/ Semester-IV	1020404	(iv) Elementary Knowledge of Computes and Bioinformatics	Elective	Theory	4	25	75(25)	100	40	60
	20/Ser	1020405	(v) Biophysics		Theory	4	25	75(25)	100	40	60
	(EP-20)	1020406	(vi) Industrial Microbiology		Theory	4	25	75(25)	100	40	60
	s per N	1020407	(vii) Phyto-techniques and Biostatistics		Theory	4	25	75(25)	100	40	60
	X	1020408	(viii) Economic Botany and Food Security		Theory	4	25	75(25)	100	40	60
	Semester-	1020480	Practical Lab (Based on the contents of Theory Courses)	Core Compulsory	Practical	4	25	75(25)	100	40	60
		1020461	Research Project-IV	Core Compulsory	Project	4	25	75(30)	100	40	60
			Project-III + Project-IV	Core Compulsory	Viva- Voce	8	50	150(60)	200	80	120
		11202041 11202042 11202043	Pre PhD-Course work								

The types of paper, number of papers, credit for each semester and research project semester wise, as per guidelines of UP state govt. letter no. 401/sattar-3-2022, dated February 09,2022, as a part of NEP-2020 implementation in U.P. universities, have been prepared as above.

The maximum and minimum marks for each Theory paper, Practical papers (internal & external) and projects have been finalized according to the letter number-1032/sattar-3-2022-8(35)/2020, dated 9 February, 2022. The basic structure of the programme related to types of paper, number of papers, credit etc. have been finalized according to the letter of government dated July 13, 2021.

Core Compulsory Courses: These are main (major) courses of the subject which every student has to study who has taken admission in PG (First and Second Year).

Core Elective Courses: These are full major courses of the subject/programme.

There courses will select by the students in 1/2/3/4 (or 7/8/9/10 in case of integrated PG) Semesters. The Botany department of university/colleges will run these courses in their department/colleges according to their resources/ specialization of teacher and students may opt them according to their choice.

Minor Electives: Some of the above courses, or any other such course developed by BoS, can be taken as Minor electives by the students of other Faculty, for multi-disciplinarily.

Value added course: Some of the above courses, or any other such course developed by BoS, can be taken as Value Added course (Minimum 2 Credits/ 30 Hours) by the students of other Faculty/ Subject, for value addition, besides the courses which are not part of the curriculum/mark sheet of the Botany students are opted by the students of the Botany can be treated as an add-on to the basic requirement for compilation of a degree programme.

Marks Distribution and Teaching hours The marks distribution for each core and elective will be as Maximum marks: 100 (Internal assessment 25 marks + External Assessment 75 marks). Teaching hours for each of the course will be 60 hours. E xamination of each paper shall be of 3 Hours (Theory) and 4 Hours (Practical) The distribution of Internal Marks will be as follows

For Practical the distribution of marks will be as follow Internal Assessment	Marks
Practical Class Interaction	5
Viva voce	4
Two practical based exercises	7 (4+3)
Charts/model/ Collection	8
Total	25
For External practical examination the distribution of marks will be as follow	Marks
External Assessment	
Viva Voce on Practical's	10
Report of Botanical Excursion/ Lab	10
Visits/Industrial training/ Survey/Collection/	
Models with reports	
Table work / Experiments	45
Practical Record File	10
Total	75

Research Project:

B.Sc. IV year will be equivalent to M.Sc. 1st year. At the end of the 2nd (even) semester (B.Sc. VIII semester or MSc Ind semester) & 4th/10th semester (M.Sc.), the candidate will submit a research project, which will be evaluated by an external examiner & internal supervisor along with a presentation and viva-voce examination.

In Fourth year (B.Sc.) or MSc first year and Fifth year (MSc final) the topic of the research project will be chosen from among the core compulsory courses/core elective courses of that year.

In each semester, each student will work 4 hour/ week/ semester for 4 credits. In this way a project work will be of 8 credits (i.e., 16 credits for two years).

Research project may be interdisciplinary/ multidisciplinary. It may be an industrial training/ internship/ survey work. Research project will be done under the guidance of the faculty member (s) preferably having PhD degree. For this a co-supervisor may be chosen from a university, college, industry, research institute etc.

The research project will be of 100 marks. If any student publishes a research paper from his/her research project in a UGC care listed/ Scopus indexed or Thomson Reuters, then he/she will get 25 extra marks (although maximum marks will not exceed more 100). The marks obtained in research project will be coded in grades and they will be counted in the calculation of CGPA.

Credits: MSc Programme will be run semester wise and choice-based credit system.

MSc Ist year or B.Sc. 4th year will be of 52 credits whereas MSc 2nd year will be of 48 credits.

Each semester will be of 20 credits of courses (4 theory+1 practical, each will be of 4 credits) and thus the credits of two years (4 semesters) will be 80 credits. A project work will be of 8 credits (i.e. 16 credits for two years). In other words it will be of 4 credits/semester i.e. a total of 16 credits.

A minor elective will be of 4 credits.

Thus M.Sc Programme will be of 100 credits (52+48).

DETAILED SYLLABUS

Pro	ogramme/Class: M.Sc.	Year: First	Semester: First	
		Subject: Botany		
Co	urse Code: : 0720401	Course Title: Diversity of Algae, &	& Bryophytes	
Course	Outcomes: ents will have clear idea of	production, phylogeny and inter-relationships of f the characteristics of the lower plant groups (A ants and application will be clear to students.		
	Credits: 4	Core: Compulsory		
	Max. Marks:	Minimum Passing Ma	arks:	
'otal No). of Lectures-Tutorials-Pra	uctical (in hours per week): L-T-P: 4-0-0		
Unit		Topics	No. of Lectures	
	Important contribution of	-		
Ι	research developments, opp	ortunities, institutions and journals.	8	
	Classification and salient f	features of different classes of Algae.		
II	Algal pigments, food reserv	ves, flagellation and their importance in	12	
	classification.			
	Thallus organization, repro	duction and life cycle patterns.		
	Economic importance of a	lgae as food, feed, source of chemicals and		
	drugs, Algal biofertilizers,	uses in industry and Algal blooms.		
III	Comparative study of class Bacillariophyceae, with ref	ses of Chlorophyceae, Xanthophyceae and erence to: of plant body including ultrastructure. action.	12	
IV		eophyceae and Rhodophyceae with reference to: of plant body.	12	
v	Range of thallus structure suitable examples)	es and their distribution in India. (plant body) and anatomy in Bryophytes (with	8	
VI	Sphagnales, Funariales and	sporophytes of Bryophytes (Progressive	8	
		Inter-relationship, affinities of various groups of		
	Ecology and economic imp	portance of Bryophytes.		

- 1. Bold, H.C. and Wynne, M. J. (1985). Introduction to the algae; Structure and reproduction. Prentice Hall, Englewood cliffs, New Jersey. 16
- 2. Cavers, F. (1976). The inter relationships of the bryophyte. S.R. Technic, Ashok Rajpath, Patna.
- 3. Chapman, V.J. and Chapman D.J. (1975). The algae. 2nd Edition, Mac. Millan Publ. Inc. New York.
- 4. Chopra, R. N., and Kumar, P. K. (1988). Biology of Bryophytes. John Wiley and Sons, New York (NY).
- 5. Desikachary, T.V. (1959). Cyanophyta. ICAR, New Delhi.
- 6. Hoek, C. van den, Mann, D. G. and Jahns, H. M. (1995). Algae: An introduction to Phycology. Cambridge University Press, UK.
- 7. Kashyap, S. R. (1929). Liverworts of the Western Himalayas and the Punjab Plain. Part1, Chronica Botanica, New Delhi.
- 8. Kashyap, S. R. (1932). Liverworts of the western Himalayas and the panjab plain (illustrated). Part 2, the Chronica Botanica, New Delhi.
- 9. Parihar, N. S. (1980). Bryophytes: An introduction to Embryophyta. Voll, Bryophyta, Central Book Depot.
- 10. Puri, P. (1981). Bryophytes: Morphology, Growth and Differentiation. Atmaram and Sons, New Delhi.
- 11. Prescott, G. W. (1969). The algae: A review. Nelson, London.
- 12. Round, F.E. (1981). The Ecology of Algae. Cambridge University Press, Cambridge.

Programme/Class: M.Sc.		Year: First	Semester: First
		Subject: Botany	
Co	urse Code: : 0720402	& Palaebotany	
Course	Outcomes: 1. Students will	l inter-relationships of Pteridophytes and Gymnosp have clear idea of the characteristics of the lower ology, reproduction & application of plants will be	plant groups.
2. Collee	Credits: 4	Core: Compulsory	
	Max. Marks:	Minimum Passing Mark	s:
	Total No. of Le	ctures-Tutorials-Practical (in hours per week): L-T-P	: 4-0-0
Unit		Topics	No. of Lectures
Ι	institutions and journals.	oneer workers, research developments, opportunities,	12
п	 a. Psilopsida: Psilophytales a b. Lycopsida: Protolepido Isoetales. 	odendrales, Lepidodendrales, Lepidospermales and Sphenophyllales and Calamitales. Idales, Ophioglossales, Marattiales, Osmundales,	12
III	Telome concept. Stelar system and evolution and Heterospory and evolution of Apogamy, apospory, parthen Soral evolution in Pteridophy Alternation of generations.	seed habit. ogenesis.	8

IV	Classification and distribution of gymnosperms with special reference to India Study of morphology, structure and life history as illustrated by the following: Pteridospermales, Bennettitales, Cycadales, Pentoxylales,Cordaitales, Ginkgoales, Coniferales, Taxales, Ephedrales, Welwitschiales and Gnetales.	12
V	Evolution and Economic importance of Gymnosperms. Geological Eras and distribution of plants in geological time scale. Types of Fossils, Process of fossilization and fossil preservation methods. Techniques of study of fossils. Distribution of fossils in India	16

1. Agashe, S. N. (1995). Paleobotany. Oxford and IBH Publ. Co. Pvt. Ltd., New Delhi.

2. Arnold, A. C. (2005). An Introduction to Paleobotany. Agrobios (India), Jodhpur.

3. Bhatnagar, S. P. and Moitra, A. (1996). Gymnosperms. New Age International, New Delhi.

- 4. Biswas, C. and Johri, B. M. (1997). Gymnosperms. 4 Narosa Publishers, NewDelhi.
- 5. Parihar, N.S. (1976). Biology and morphology of the Pteidophytes. Central Book Depot.
- 6. Rashid, A. (1999). An Introduction to Pteridophyta. Vikas Publishing House Pvt. Ltd., New Delhi.
- 7. Ramanujan, C.K.G. (1970). Indian Gymnosperms in time and space. Today & Tomorrow 's Printers & Publishers.
- 8. Sporne, K.R. (1965). Morphology of Gymnosperms. Hutchinson University Library.
- 9. Sporne, K.R. (1986). The morphology of Pteridophytes. Hutchinson University Press, London.

Pro	ogramme/Class: M.Sc.	Year: First	Semester: First		
	Subject: Botany				
Co	Course Code: 0720403 Course Title: Morphology and Taxonomy of Angiosperms				
Course	Course Objectives: To acquaint the students about the morphology and taxonomy of angiosperms				
Course	Outcomes: On successful com	pletion of this course, students will be able to:			
•	Understand the distinctive feat	ures of different angiosperms plants.			
•	Learn about various approac	hes to classify the angiosperms.			
•	Learn the practical applications	, techniques to preserve the plants.			
	Credits: 4	Core: Compulsory			
	Max. Marks: 25+75	Minimum Passing Marks	:		
	Total No. of Lo	ectures-Tutorials-Practical (in hours per week): L-T-P:	4-0-0		
Unit		Topics	No. of Lectures		
	Morphology: Morphology	of flower, Stamen and Carpel, Floral characteristics,			
Ι	structure of the pistil, polle	n stigma interactions, Plant adaptation-physiological	12		
I	structure of the pistil, polle and their morphological na	n stigma interactions, Plant adaptation–physiological ture (xerophyte, hydrophyte and halophyte)	12		
I 	structure of the pistil, polle and their morphological na Contribution of Plant Ta	n stigma interactions, Plant adaptation-physiological	12		

ш	Need for scientific names, development of botanical code, contents of botanical code, Ranks and endings provided by the ICN, Typification (Holotype, Isotype, Paratype, Syntype, Lectotype, Neotype), Author citation, Publication of Names, Principle of Priority, PhyloCode. Outline of classification of Angiosperms as proposed by Bentham and Hooker. APG classification system: Basal living angiosperm, Monocots and Eudicots. Phylogenetic relationships of major angiosperm clades.	12
IV	Special features of important families: Monocots (Commelinaceae, Cyperaceae, Poaceae, Orchidaceae), Eudicots (Magnoliaceae, Ranunculaceae, Papaveraceae, Brassicaceae, Malvaceae, Oxalidaceae, Rutaceae, Fabaceae, Rosaceae, Lythraceae, Cucurbitaceae, Apiaceae, Rubiaceae, Asteraceae, Apocynaceae, Convolvulaceae, Solanaceae, Acanthaceae, Scrophulariaceae, Lamiaceae, Amaranthaceae, Euphorbiaceae, Cannabaceae, Moraceae).	12
v	Herbarium preparation and use, Virtual Herbarium, Roles of a Botanical Garden, Floras, Journals, Taxonomic Keys, DNA Barcoding. Chemotaxonomy, Embryology and Palynology Sieve-tube plastids in relation to taxonomy. Possible ancestors of Angiosperms.	12

1. Singh, G. (2012). Plant Systematics: Theory and Practice. Oxford & IBH Pvt. Ltd., New Delhi. 3rdedition. 29

2. Jeffrey, C. (1982). An Introduction to Plant Taxonomy. Cambridge University Press, Cambridge.

3. Judd, W.S., Campbell, C.S., Kellogg, E.A., Stevens, P.F. (2002). Plant Systematics-A Phylogenetic Approach. Sinauer Associates Inc., U.S.A. 2nd edition.

4. Maheshwari, J.K. (1963). Flora of Delhi. CSIR, New Delhi. 5. Radford, A.E. (1986). Fundamentals of Plant Systematics. Harper and Row, New York

Programme/Class: M.Sc. Year: First Semester: First						
Subject: Botany						
Course Code: : 0720404	Course Title: Diversity of Mic	robes				
Course Objectives: The objecti	Course Objectives: The objective of this course is to make students aware about microbial world and its					
diversity along with their skill en	nhancement in microbial application for human w	velfare and development.				
Course Outcomes: By the end	Course Outcomes: By the end of the course, the students should be able to:					
1. Address the concepts of micro	bes and their diversity.					
2. Evaluate methods for isolation	n, purification and cultivation of microorganisms	from different sources.				
3. Understand classification and	growth patterns of bacterial cell.					
4. Differentiate between virus, v	iroids, virusoids and prions.					
•	-					
Credits: 4	Core: Compulsory					
Max. Marks: 25+75	Max. Marks: 25+75 Minimum Passing Marks:					
Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0						
Unit	Topics	No. of Lectures				

	11	
I	Pioneer microbiologists; golden era of microbiology. Research developments, opportunities, institutions and journals. Microbes' identifications through internet applications.	6
п	Introduction and general characteristics of Viruses, Classification of plant viruses. Isolation, purification and characterization of viruses. Replication, transmission of viruses, economic importance, symptomatology of plant viruses. Virus-induced cell transformation, virus-induced cancer. Cyanobacteria, Viroids, Prions. Archaebacteria and Eubacteria: General account, ultrastructure, nutrition and reproduction, economic importance. Plasmids and their characteristics. 16s r-DNA sequencing. Agricultural Microbiology: Agriculturally important microorganisms,	12
ш	biological nitrogen fixation, Mycorrhizae, Plant diseases and their biocontrol. Plant growth promoting rhizobacteria (PGPR). Weed and Pest Biocontrol. Environmental Microbiology: Microbes and quality of environment. Microbial degradation of pesticides and hydrocarbons. Biodegradation of the	6
IV	agricultural residues. Bioremediation of contaminated soils and water. Microbes in nanotechnology. Biosensors, Biogas Production. Food and Industrial Microbiology: Fermentation, fermenter design and growth processes. Food spoilage. Microbes in recovery of metal (bioleaching) and oil. Cell and enzyme immobilization. Microbial enzymes of industrial interest. Single Cell Protein. Vaccines.	7
v	10. Host-parasite interaction: a brief idea of recognition and entry process of bacteria, viruses into animal & plant-host cells, alteration of host cell. Virus induced cancer; bacteria and plant two- component signaling systems; bacterial chemotaxis and quorum sensing. Hormones and their receptors, signaling through G–protein coupled receptors, regulation of signaling pathways.	7
VI	11. Innate and adaptive immune system: Types of Immunity, antigens, antigenicity, structure and function of antibody molecules, monoclonal antibodies, Antigen-antibody interactions (serology), activation & differentiation of B and T Cell, B & T cells receptors, MHC molecules compliment system, immune response during bacterial (tuberculosis), parasitic (malaria) and Viral (HIV) infections, vaccine.	10
VII	 IIsolation, purification and cultivation of microbes. Important criteria used for classifications of microorganisms (morphological, ecological, biochemical, molecular and numerical). Classification of bacteria based on Bergey's manual of determinative bacteriology. Archaeobacteria and Eubacteria: Characters, Ultrastructure, nutrition, genetic recombination (Transformation, Transduction, Conjugation), and economic importance. Cyanobacteria: salient features and biological importance. 	12

- 1. Salyers, A. A., Whitt, D. D. (2000). Microbiology: Diversityand the Environment.1st Edition.
- 2. Pommerville, J. C. (2018). Fundamentals of Microbiology. 11th Edition.
- 3. Pelczar (Jr.), M. J., Chan, E.C.S. and Krieg, N. R. (2016). Microbiology. 5th Edition.
- 4. Tortora, F. (2017). Microbiology an introduction. 12th edition.
- 5. Willey, J., Sandman, K., Wood, D. (2020). Prescott's Microbiology. 11th Edition.

11

Pro	ogramme/Class: M.Sc.	Year: First	Semester: First
		Subject: Botany	
Cou	irse Code: : : 0727950	Course Title: Wonders of Pla	nts
C ourse Plants.	Objectives: The course aims	s to have understanding of Plant & Religion, strange &	Economic important
Course	Outcomes: On successful co	ompletion of this course, students will be able to:	
		ny and apply them in real life problems.	
•	Plants are wonderful in all v	valks of life.	
	Credits: 4	Core: Minor-Open Elective	2
	Max. Marks: 25+75	Minimum Passing Mark	5:
	Total No. of Lec	tures-Tutorials-Practical (in hours per week): L-T-J	P: 4-0-0
Unit		Topics	No. of Lectures
I	Plant & Astrology; Sacred	rship in Vedic Period, Puranas, Buddhism & Jainism: Groves; Venerated plants of your locality. Plants in in Epic like Mahabharata, Ramayana.	12
II	Plant with Unique Morpho Sepria, Sequoia & it allied (Adansonia), Selaginella	logy: Welwitschia, Cacti, Orchids, Wolffia, Rafflesia, Taxa, Victoria amazonica, Amorphophallus, Baobab lepidophylla, Dancing Grass (<i>Desmodium gyrans</i>), ous plants (<i>Dionaea, Nepenthes, Drosera, Utricularia</i>	12
III	Economic important Plants yielding plants of your Loca	s: Food, Ornamental, Fibers, Poisonous & Timber ality.	8
IV	Plants & Plants that thrills	nisms (Ficus, Calotropis, Ophrys, Salvia), Signature (Stimulants, Depressants etc.), Conservation of Rare, plants, Exotic & Invasive Plants.	8
V	Traditional knowledge and Curry Patta, Giloe, Kachn	l utility of some medicinal plants in India: Neem, ar, Arjun, Harad, Bahera, Amla, Amaltas, Banyan, Ayurvedic Products: Triphala, Chyawanprash,	12
VI	Introduction to Ayurvedic	formulations with methods of preparation & Uses: , Arishta, Taila and Bhasma.	8

- 1. Raven, P.H., Evert, R.F. and Eichhorn, S.E. (2005). Biology of Plants (7th ed.). New York: W. H.Freemanand Company. 49
- 2. Sakai, A. and Larcher, W. (1987). Frost Survival of Plants. Springer-Verlag, New YorkNY. 321pp.
- 3. Kochhar, S.L. (2016). Economic Botany: A Comprehensive Study. Cambridge University Press.
- 4. Trewavas, A. (2003). Aspects of plant Intelligence. Annals of Botany. 92 (1):1-20.
- 5. Prance, G.T. (2001). Discovering the plant world. Taxon, 50 (2, 4): 345–359.
- 6. Ayurvedic formulary of India, Govt. of India
- 7. Pharmacopoeial standards for Ayurvedic formulations CCRAS, Delhi

		13	
Pro	ogramme/Class:M.Sc.	Year:First	Semester:First
		Subject: Botany	
Cou	urseCode:::0720451	CourseTitle: Biofertilizers	
Course	Objectives: The course aims	to have understanding of Sustainable practices of Agr	riculture
Course	Outcomes: Onsuccessfulcom	bletionofthiscourse, students will be able to:	
		actices for enhancing agricultural yield.	
	Concepts of Organic farmin		
		~	
	Credits:4	Core:Minor-OpenElective	
	Max.Marks:25+75		
	WIAX.WIAFKS: 25+75	MinimumPassingMarks	S t
	TotalNo.ofLe	ctures-Tutorials-Practical(inhoursperweek):L-T-P:4	-0-0
Unit	Topics		No.ofLectures
Ι		microbes and plants used as biofertilizer: Rhizobium	18
-	(isolation, identification, Actinorrhizal symbiosis).	on, mass multiplication, carrier based inoculants,	
		nd mass multiplication – carrier based inoculant,	18
Π	associative effect of diff	erent microorganisms. Azotobacter: classification,	
	characteristics - crop response to Azotobacter inoculum, maintenance and mas		
	multiplication. Cyanobacteria (blue green	algae), Azolla and Anabaena azollae association.	
ш		ffecting growth, blue green algae and Azolla in rice	18
		sociation, types of mycorrhizal association, taxonomy,	
		on, phosphorus nutrition, growth and yield – solation and inoculum production of VAM, and its	
	influence on growth and yie		
		n manuring and organic fertilizers, Recycling of	
IV	0 1 0	gricultural and Industrial wastes - biocompost making	6
	methods, types and method	of vermicomposting – field Application.	

1. Dubey, R.C., (2005). A Text book of Biotechnology S. Chand & Co, New Delhi.

2. Kumaresan, V. (2005). Biotechnology, Saras Publications, New Delhi.

3. John Jothi Prakash, E. (2004). Outlines of Plant Biotechnology. Emkay -Publication, New Delhi.

4. Sathe, T.V. (2004). Vermiculture and Organic Farming. Daya publishers.

5. Subha Rao, N.S. (2000). Soil Microbiology, Oxford & IBH Publishers, New Delhi.

6. Vayas, S.C., Vayas, S. and Modi, H.A. (1998). Bio-fertilizers and organic Farming. Akta Prakashan, Nadiad.

Pro	ogramme/Class: M.Sc.	Year: First	Semester: Second
		Subject: Botany	
Co	urse Code: : 0827901	Course Title: Genetics & Plant Br	reeding
o urse This c The co	Outcome: course will provide an under course will provide an unders	deal with Mendelian and non-Mendelian inheritance standing of - inheritance of qualitative and quantita tanding of – fine structure of genes and biochemica about – mutations and extra chromosomal inheritan	ative traits. al genetics
	Credits: 4	Core: Compulsory	
	Max. Marks:	Minimum Passing Marks	S :
	Total No. of Lect	cures-Tutorials-Practical (in hours per week): L-T-I	P: 4-0-0
Unit		Topics	No. of Lectures
I	Contribution of pioneer work institutions and journals.	ers and recent developments, opportunities,	8
П	Mendel's Laws of inheritance Allelic and non-allelic interac Multiple alleles: alleles, coa incompatibility.		8
ш	Linkage and crossing over: chromosome mapping, linkage groups, mechanism of chromosome pairing and synaptonemal complex. Sex determination in man, Drosophila and plants.		8
IV	Maternal effects and Extra- nuclear inheritance.Biochemical genetics, concept of gene.Structural changes in chromosomes: Deficiency, duplication (meiotic pairing & phenotypic effects), Inversions, translocations, (meiotic pairing, Chromosome disjunction), multiple translocations.Numerical changes in chromosomes and Haploidy: a) Euploidy/Polyploidy : Classification, production, role in evolution, utility in crop improvement. b) Aneuploidy : Trisomics, tetrasomics, monosomy, multisomy- Meiotic behaviors, breeding behavior. c) Apomixis: Cytogenetic basis and types of Apomictic reproduction		12
V	Mutation: Types of m Physical and chemical mu mutation, mutation by transp	utations, spontaneous and induced mutations, tagens, gene mutations, induction and detection of	12
VI	Methods of plant breeding. Genetic basis of inbreeding	g, hybridization and heterosis, exploitation of work done in India with special reference to ugarcane and cotton.	12

- 1. Gupta P K (2009). Genetics, 4/e. Rastogi Publications, Meerut.
- 2. Gupta P K (2007). Genetics:Classical to modern. Rastogi Publications, Meerut.
- 3. Griffith et al (2008). An introduction to Genetic Analysis. Freeman & Co.
- 4. Hartl DL and Jones EW (1997). Genetics: Principles and Analysis 4th Ed. Jones & Bartlett Publishers, Inc

- 5. Hartwell L et al (2000). Genetics: From genes to genomics. McGraw Hill, New Delhi.
- 6. Lewin B. (2007). Genes IX. Wiley Eastern Ltd., New Delhi.
- 7. Pierce, B. (2005). Genetics: A conceptual Approach 2nd Ed. WH Freeman
- 8. Snustad D P, Simmons NJ and Jenkins JB (2003). Principles of Genetics. John Wiely& Sons, New York.
- 9. Strickberger, N.W. (1985). Genetics 3rd Ed. Macmillan Co. New York.
- 10. Allard, R.W. (1960). Principles of Plant Breeding. John Wiley, New York
- 11. Chopra, V.L. (2000). Plant Breeding: Theory and Practice 2nd Ed. Oxford & IBH, New Delhi.
- 12. Frey, K. J. (1966). Plant Breeding. The Iowa State University Press, Ames.
- 13. Frey, K. J. (1982). Plant Breeding II. Kalyani Publishers, New Delhi.
- 14. Welsh, J. R. (1981). Fundamentals of Plant Genetics and Breeding. John Wiley and Sons, New York.

15. Bhojwani, S.S. and Razdan, M.K., (1996). Plant Tissue Culture: Theory and Practice. Elsevier Science. Amsterdam. The Netherlands.

Programme/Class: M.Sc.	Year: First	Semester: Second

	Subject: Botany
Course Code: : 0827902	Course Title: Cell and Molecular Biology

Objectives:

- 1. To understand the structures and purposes of basic components of the cell.
- 2. To understand how these cellular components to generate and utilize energy in cells.
- 3. To understand the cellular components underlying mitotic and meiotic cell division.
- 4. To relate the cell cycle to the health, wellbeing and biology of all organisms.
- 5. The course further deals with plant secondary metabolites and plant-plant interaction.

Course Outcomes:

1. Students will apply their knowledge of cell biology to selected examples of changes or losses in cell function.

- 2. Application of the studies in accordance with responses to environmental or physiological changes.
- 3. Student will have better understanding of the alternation of cell function brought about by mutation.
- 4. Impart an insight into the various biochemical and molecular mechanism of plant biology.
- 5. Take students to higher levels of biochemical and molecular learning about plant system.
- 6. Understand the biochemical and molecular role of various biomolecules.

	•		
	Credits: 4 Core: Compulsory Max. Marks: 25+75 Minimum Passing Marks		
			S:
	Total No. of Le	ctures-Tutorials-Practical (in hours per week): L-T-J	P: 4-0-0
Unit		Topics	No. of Lectures
I	Introduction of Cell and molecular biologist. Research developments, opportunities, institutions and journals.		6
П	IIThe Dynamic cell: Structural organization of plant cell, specialized plant cell. Microscopy: Principle, parts and functioning of electron microscopes including stereoscopic binocular, dark field illumination, confocal, phase contrast, fluorescence and polarizing microscopes, camera Lucida, SEM, TEM. STEM. Cell envelopes: Ultra-structure, chemical foundation and functions of cell wall, Biological membranes with special emphasis on plasma membrane and tonoplast membrane.		12

16	

III	Plant Cell inclusions, their structure and function; Mitochondria and Chloroplast.	6
	Nucleus & Nucleolus: Structure, nuclear pores, nucleosome concept.	
	Chromatin Organisation: Chromosome structure and composition,	
	Centromere, Telomere, Euchromatin and Heterochromatin, Karyotypes,	
	Polytene, Lamp brush chromosomes and Sex chromosomes.	
	Ribosomes, Dictyosomes, Lysosomes, ER, Microbodies and Plasmodesmata.	
	Cell cycle & Apoptosis: Biochemical and genetic mechanism-	_
IV	a) Mitosis, spindle formation mechanism, cytokinesis, cell plate	7
	formation, Cytoskeleton with emphasis on spindle apparatus, motor	
	movements.	
	b) Meiosis and its significance	
	c) Programmed Cell Death (PCD).	
	Nucleic Acids: Nature, Structure, types of DNA (A, B, Z-DNA) and RNA, (t-	
V	RNA, micro-RNA) difference between DNA & RNA; DNA replication (Origin	12
	and fork) and its biosynthesis, extra chromosomal replications, DNA damage	
	and repair, transposons and mechanisms of transposition.	
	Genetic Code: Discovery, Properties and cracking of genetic code.	
	Protein Synthesis: Basics, mechanism of protein synthesis in prokaryotes and	
	eukaryotes, transcription, RNA processing, reverse transcription, translation	
VI	and regulation of protein synthesis in prokaryotes (Structural, regulatory	17
	genes and operon model).	
	Control of gene expression at transcription and translation level: Regulation of	
	gene expression in phages, viruses, prokaryotes and eukaryotes, role of	
	chromatin in regulating gene expression and gene silencing.	

1. Alberts, B., et. al. (1983). Molecular Biology of The Cell. W. W. Norton & co., 1464pp, Sixth edition, United states.

2. Cooper, G. (2000). The Cell, A molecular approach. Second edition.

3. Lodish, H., et. al. (2021). Molecular Cell Biology. Ninth edition.

4. Buchanan, B., Gruissem, G. and Jones, R. (2000). Biochemistry and Molecular Biology of Plants. American Society of Plant Physiologists, USA.

5. Jordan, B.R. (2006). The Molecular Biology and Biotechnology of Flowering. 2nd Edition, CAB International, U.K.

6. Nelson, D.L., and Cox, M.M. (2008). Lehninger Principles of Biochemistry (5th ed.). W.H. Freeman & Co., New York.

7. Taiz, L. and Zeiger, E. (2010). Plant Physiology. 5th Edition. Sinauer Associates, USA.

Pro	ogramme/Class: M.Sc.	Year: First	Semester: Second
		Subject: Botany	
Co	urse Code: : 0827903	Course Title: Ecology and Phytoge	ography
Course	Objectives: To provide the s	tudents the ability to understand the environment and a	distribution of plants.
	•		
Course		ompletion of this course the students will be able to	
	 Understand the concepts Know about the environment 	nent and learn the way to conserve the environment.	
	Know about the environm	hent and learn the way to conserve the environment.	
	Credits: 4	Core: Compulsory	
	Max. Marks: 25+75	Minimum Passing Mark	s:
	Total No. of Lec	tures-Tutorials-Practical (in hours per week): L-T-	P: 4-0-0
Unit		Topics	No. of Lectures
	Introduction of ecologist, re	cent developments, opportunities, institutions and	
Ι	journals		8
TT	Ecological factors (light, air	, water, topographic, edaphic, biotic), climate	10
II	change.		12
		cies: Genecology and Ecological niche.	
		concepts, characteristics of population and	
	population structure. Community Ecology:	Composition, characters, structure, origin and	
		: methods of study of structure of community.	
		ess concept and trends. Climax. (Xerosere,	
III	hydrosere)		12
		ture and functions, with example of a natural and	
	artificial ecosystem, Energy		
	ecosystems.	surement methods and productivity in different	
		of I.B.P. (International Biological Programme),	8
IV	M.A.B (Man and Biosphere		
		on (Air, Water, Soil and Noise) and greenhouse	
	gases, Ozone hole, and glob	_	
		s, utilization and disposal of organic wastes and	
V	inorganic wastes, Biodiversity and its conserv	ration	12
	•	C, N, P, S, and Hydrological cycle, Nutrient	
		terrestrial communities and aquatic communities.	
	-	ion, rainwater harvesting, Chipko movement, Van	
	Mahotsav, Afforestation, re		
VI	Principles of phytogeograp	hy, vegetation types and Phytogeographical regions	8
V I		pothesis, continental drift, endemism, Hot spots,	ð
	Plant exploration. Invasion		
		ts, principles, processes, tools, techniques in pplication in ecological and meteorological research	
	acquisition of R.S. data. A	pplication in ecological and meteorological research	

1. Odum, E.P. (2005). Fundamentals of ecology. Cengage Learning India Pvt. Ltd., New Delhi. 5th edition.

2. Singh, J.S., Singh, S.P., Gupta, S. (2006). Ecology Environment and Resource Conservation. Anamaya Publications, New Delhi, India.

3. Ambast, R.S. & Ambast N.K. (2022). A Textbook of Plant Ecology. CBS Publisher & Distributors Pvt Ltd. 1t6th Ed.

4. Sharma, P.D. (2010). Ecology and Environment. Rastogi Publications, Meerut, India. 8th edition.

5. Pratima Kapur and S. R. Govil (2004). Experimental Plant Ecology. CBS Publishers & Distributors Pvt Ltd, India

6. Govil S. R. & Tripathi, B. D. (2001). Water Pollution: An Experimental Approach. CBS Publishers & Distributors Pvt Ltd, India

7. Wilkinson, D.M. (2007). Fundamental Processes in Ecology: An Earth Systems Approach. Oxford University Press. U.S.A.

8. Kormondy, E.J. (1996). Concepts of ecology. PHI Learning Pvt. Ltd., Delhi, India. 4th edition.

9. Snustad, D.P. and Simmons, M.J. (2010). Principles of Genetics. John Wiley and Sons Inc., U.S.A. 5th edition.

Pro	ogramme/Class: M.Sc.	Year: First	Semester: Second
		Subject: Botany	
Co	urse Code: : 0827904	Course Title: Fungi and Plant Pathology	
Objecti	ves:		
•	derstand the detailed struc	ture of fungus	
. To stu	dy the evolution of fungi.		
. To stu	idy the economic importar	nce of fungi	
	Outcomes:		
	ents will understand every a		
		the arena of mushroom cultivation and be the futu	re entrepreneur.
. Stude	ents will able to use locally	available strains of fungi as biocontrol agents.	
	• Credits: 4		
	Creans: 4	Core: Compulsory	
	Max. Marks: 25+75	Minimum Passing Marks:	
	Total No. of Lec	tures-Tutorials-Practical (in hours per week): L-T-P:	4-0-0
Unit		Topics	No. of Lectures
	Contribution of Mycologist	and Plant Pathologist, Research developments,	
Ι	Opportunities, Institutions a	nd journals.	8
	General characters of fungi,	cell structure and nutrition.	
II	Range of Thallus organizati		12
Π			12
Π		on in fungi. cells, (ii) molecular biology of fungi	12
Π	Unique aspects of (i) fungal Types of reproduction in fu	on in fungi. cells, (ii) molecular biology of fungi	12
Π	Unique aspects of (i) fungal Types of reproduction in fun Classification of fungi as	on in fungi. cells, (ii) molecular biology of fungi ngi.	12
Π	Unique aspects of (i) fungal Types of reproduction in fun Classification of fungi as Blackwell (1996). Recogni	on in fungi. cells, (ii) molecular biology of fungi ngi. proposed by Ainsworth (1973) Alexopoulus, Mims&	12

Heterokaryosis,

Nutrition and growth in Fungi including factors affecting fungal growth. Differentiation in fungi: control of i) Dimorphism. ii) conidiation. iii) mating

(with the help of Sex hormones). Heterothallism,

parasexuality and physiological specialization in Fungi.

ш	 A general account and affinities of the following groups with special reference to systematic position, structure and reproduction of organisms mentioned hereunder: I. The Fungi belonging to kingdom Protozoa: a. Myxomycota (myxomycetes): Stemonites, Ceratiomyxa, b. Plasmodiophoromycota (Plasmodiophorales) Plasmodiophora. II. The Fungi belonging to Kingdom Chromista: 	12
	a. Oomycota: Saprolegnia, Phythium, Phytopthora, Albugo,III. The Kingdom Fungi:	
	a. Chytridiomycota: Synchytrium,b. Blastocladiomycota: Allomyces, Coelomomycesc. Zygomycota: Saksanaea, Pilobolus, Entomophthora	
	 d. Ascomycota : Taphrina, Phyllactinia, Erysiphae, Neurospora, Peziza e. Basidiomycota: Puccinia, Uromyces, Hemiliea, Melampsora, Tilletia, Ustilago 	
	f. Anamorphic fungi (Deuteromycotina): With reference to their telomorph, also wherever possible; Cercospora, Helminthosporium, Curvularia, Alternaria, Fusarium, Colletotrichum, Aspergillus, Penicillium.	
IV	Fungal interactions: I. Role of antibiotics, hyphal interference,II.Mycoparasitism,III. Commensalism, Mycorrihizae, Lichens (Structure, types, reproduction, importance),	12
	Fungi as biocontrol agents.	
	Symptoms of fungal, bacterial and viral plant diseases. Causes of plant diseases.	
	Host-parasite relationship, role of enzymes and toxins in disease development.	
	Effect of infection on physiology of host. Effect of environment on disease development-epiphytotics.	
	Disease control by Physical methods, chemical methods, crop rotation, plant quarantines, resistance Integrated pest management mechanism, its advantages, disadvantages and future prospects.	
V	Principles of biological control of air- borne and soil-borne plant diseases. Etiology and control of the following crop diseases: Paddy: Paddy blast, Bacterial leaf blight. Wheat : Black Stem rust, Bunt of wheat, Flag smut. Jowar: Grain Smut. Sugarcane: Smut, Red rot. Cotton: Wilt	16
	Grape : Downy and powdery mildew Apple : Apple scab Groundnut: Tikka disease. Fibre: Rust of Linum. Coriander: Gall of coriander.	

1. Alexopoulos, C.J., Mims, C.W. and Blackwell, M. (2007). Introductory Mycology. Fourth Edition, Wiley India Pvt. Limited.

2. Mehrotra, R.S. (2017). Plant Pathology. 3rd Edition, McGraw-Hill Education, New Delhi.

3. Okafor, N. and Okeke, B.C. (2018). Modern Industrial Microbiology and Biotechnology. 2ndEdition, CRC Press, Boca Raton

4. Sethi, I.K. and Walia, S.K. (2018). Text book of Fungi & Their Allies, Second Edition. MacMillan Publishers Pvt. Ltd., Delhi, India

5. Webster, J. and Weber, R. (2007). Introduction to Fungi. Third Edition, Cambridge University Press, Cambridge and New York.

7. Willey, J M., Sherwood, L.M. and Woolverton, C.J. (2017). Prescott's Microbiology, 10th Edition, McGraw-Hill,

USA

8. Agrios, G.N. (1997). Plant Pathology, 4th edition, Academic Press, U.K.

9. Alexopoulos, C.J., Mims, C.W., Blackwell, M. (1996). Introductory Mycology, John Wiley & Sons (Asia) Singapore. 4th edition.

10. Webster, J. and Weber, R. (2007). Introduction to Fungi, Cambridge University Press, Cambridge. 3rd edition.

11. Sethi, I.K. and Walia, S.K. (2011). Text book of Fungi and Their Allies, Macmillan Publishers India Ltd.

12. Sharma, P.D. (2011). Plant Pathology, Rastogi Publication, Meerut, India.

Pro	ogramme/Class: M.Sc.	Year: First	Semester: Second
		Subject: Botany	
Co	urse Code: : 0827905	Course Title: Anatomy and Emb	oryology of Angiosperms
Course	Objectives: To study the exte	ernal and internal structures of root stem and leaf.	
Course •	Outcomes: On successful co Understand the morphology o Understand the basic concept	•	
	Credits: 4	Core: Compulsory	
	Max. Marks: 25+75	Minimum Passing Marks	:
	Total No. of Lec	tures-Tutorials-Practical (in hours per week): L-T-P	: 4-0-0
Unit		Topics	No. of Lectures
Ι	Shoot development: org Cytological and molecular	ents, Opportunities, Institutions and journals. anization of shoot apical meristem (SAM), analysis, Leaf (Marginal meristem). ation of root apical meristem (RAM), Cell fates and	
	lineage differentiation of v Epidermal structures, onto	ascular tissue, regulation of root growth. geny and classification of stomata, trichomes and Structure and development of sieve elements, P-	12
	•	and development of tracheary elements Vascular ormal functioning Nodal Anatomy: evolution of	
II	Plant Tissues: Classification; Simple and complex tissues; cytodifferentiation of tracheary elements and sieve elements; Pits and plasmodesmata; Wall ingrowths and transfer cells, adcrustation and incrustation, Ergastic substances.		8
ш	Stem: Organization of shoot apex (Apical cell theory, Histogen theory, Tunica Corpus theory, continuing meristematic residue, cytohistological zonation); Types of vascular bundles; Structure of dicot and monocot stem. Leaf: Structure of dicot and monocot leaf, Kranz anatomy. Root: Organization of root apex (Apical cell theory, Histogen theory, Korper-Kappe theory); Quiescent center; Root cap; Structure of dicot and monocot root; Endodermis, exodermis and origin of lateral root.		8
IV	Secondary growth in root an Types of rays and axial pare and heartwood; Ring and o	ure, function and seasonal activity of cambium; d stem. Wood: Axially and radially oriented elements; enchyma; Cyclic aspects and reaction wood; Sapwood diffuse porous wood; Early and late wood, tyloses; n: Development and composition of periderm.	12

	Adaptive and Protective Systems: Epidermal tissue system, cuticle, epicuticular waxes, trichomes (uni-and multicellular, glandular and nonglandular, two examples of each), stomata (classification); Adcrustation and incrustation; Anatomical adaptations of xerophytes and hydrophytes. Secretory System: Hydathodes, cavities, lithocysts and laticifers.	8
VII	Stamen and Carpel evolution. Microsporogenesis and Megasporogenesis. Embryo sac and its types. Pollination and Fertilization. Embryo and Endosperm development. Placentation and its types. Types of fruits. Seed germination. Dormancy.	12

- 1. Dickison, W.C. (2000). Integrative Plant Anatomy. Harcourt Academic Press, USA.
- 2. Fahn, A. (1974). Plant Anatomy. Pergmon Press, USA.
- 3. Mauseth, J.D. (1988). Plant Anatomy. The Benjammin/Cummings Publisher, USA.
- 4. Esau, K. (1977). Anatomy of Seed Plants. John Wiley & Sons, Inc., Delhi.
- 5. Bhojwani, S.S. and Bhatnagar, S.P. (2011). The Embryology of Angiosperms, Vikas Publishing House. Delhi. 5th edition.
- 6. Shivanna, K.R. (2003). Pollen Biology and Biotechnology. Oxford and IBH Publishing Co. Pvt. Ltd. Delhi.
- 7. Raghavan, V. (2000). Developmental Biology of Flowering plants, Springer, Netherlands.
- 8. Johri, B.M. (1984). Embryology of Angiosperms, Springer-Verlag, Netherlands.

Pro	ogramme/Class: M.Sc.	Year: First	Semester: Second
		Subject: Botany	
Cou	urse Code: :: 0827950	Course Title: Herbal Produc	ets
		erbal medicinal product and herbal cosmetics	
Course	outcomes: Upon completio	n of the course, the students shall be able to unders	stand
followin	•		
	ngredients used in herbal pre-		
	uilding blocks for various h		
		e science to develop aromatherapy, cosmetics,	
	euticals.		
4. Scient	Č i	cosmetics and cosmeceuticals with desired Safety,	stability, and efficacy.
	Credits: 4	Core: Minor-Open Electiv	e
	Max. Marks: 25+75	Minimum Passing Mark	s:
	Total No. of Lect	tures-Tutorials-Practical (in hours per week): L-T-	P: 4-0-0
Unit		Topics	No. of Lectures
Ι	Pioneer workers of Ayurveda, Research developments, Opportunities, Institutions and journals.		12
II	product, herbal drug prepar	efinition of herb, herbal medicine, herbal medicinal ration. Source of Herbs. Selection, identification and	12
		materials. Processing of herbal raw material.	
		nfusion, Fluid extract, Tincture, Aromatic water, Hair	
	care Botanicals, Herbal Crea	m, Herbal Shampoo, Herbal Syrup	
		ormulation development and quality control of Herbal	
III	cosmetics used in: Hair care	e, skin care, anti-wrinkles & antiaging.	12
	Herbs in cosmetics: A bri	ef account of following herbals or herb extracts or	
IV herbal products of cosmetic importance such as Acacia concinna pods, Aloe Vera, Almond oil, Neem, Citrus aurantium peels, Henna, Turmeric, Liquorices, Olive oil, tea tree oil and wheat germ oil with special emphasis on their source, active principles and cosmetic properties.		12	

V	Herbal formulations: Conventional herbal formulations like syrups, mixtures and tablets and Novel dosage forms like phytosome. Aromatherapy: Various	12
	essentials oils used in Aromatherapy with their Significance. Evaluation of	
	Drugs: WHO & ICH guidelines for the assessment of herbal drugs Stability	
	testing of herbal drugs.	

1. Sharma, P. P. (2008). Cosmetics - Formulation, Manufacture and quality control, 4th edition, Vandana publication, Delhi.

2. Skaria,B. P. et al. (2021). Aromatic Plants. Horticulture Science Series, New India Publishing Agency, New Delhi.
 3. Keville, K. and Green, M. (2008). Aromatheraphy (A Complete Guide to the Healing Art). Sri Satguru Publications, New Delhi.

4. Chattopadhyay, P. K. (2018). Herbal Cosmetics & Ayurvedic Medicines (EOU). National Institute of Industrial Research, Delhi.

Balsam, M. S. and Sagarin, E. (1972-1974). Cosmetics Science and Technology. Wiley Inter-science, New York.
 Barel, A. O., Paye, M. and Maibach, H. I. (2009). Handbook of cosmetic science and Technology. 3rd edition.

Cour	gramme/Class: M.Sc.	Year: Second	Semester: Third			
		Subject: Botany				
	Course Code: :: 0927901 Course Title: Plant soil water relations, Growth and Development (Plant Physiology					
Course (Course Objectives: To study the plant soil and water interaction.					
	How the factor	s influence the growth and development of plants				
Course	Outcomes: On successful co	ompletion of this course, students will be able to:				
• H	Have an understanding of Phy	siological behavior of plants.				
• L	learn the basic concepts of so	bil water plant interaction.				
	Credits: 4	Core: Compulsory				
1	Max. Marks: 25+75	Minimum Passing Mar	ks:			
	Total No. of Lec	tures-Tutorials-Practical (in hours per week): L-T	-P: 4-0-0			
Unit		Topics	No. of Lectures			
		ysiology, Research developments, Opportunities,				
	Institutions and journals.	cell structure: colloidal systems, Water as a				
	1 1	•	20			
	universal solvent, pressures and potentials. Active and passive absorption of water. Factors affecting water absorption Role of micro and macro mineral		20			
	nutrients, their physiological					
	Hydroponics. Mechanism of					
	mineral absorption.					
	Driving forces and res		12			
		p, Translocation of solutes in plants; sensor-	12			
	regulator system, sucrose set	6				
		esponse to biotic and abiotic stress, mechanism of AR, water deficit and drought resistance				
		etal toxicity, freezing heat and oxidative stress				
	resistance,					
		rre, physiological role, mechanism of action,	8			
		ations of following plants hormones: inin. Hormone receptors, cell signaling and Signal	o			
	transduction	min. normone receptors, cen signating and signal				

IV	Elementary idea of structure and functions of ABA, Ethylene, Ascorbic Acid, Brassinosteroids, Polyamines, Jasmonic acid and Salicylic acid. 11.Sensory photobiology: detection structure, chemistry, physiology, function and mechanism of action of phytochromes, cryptochromes and phytotropins. Photoperiodism; Photoinduction and vernalization, Role of florigen, vernalin, phytochrome and C/N ratio in flowering.	12
V	Dormancy: Dormancy of seeds and buds, gene expression during dormancy. Seed germination and seedling growth, metabolism of nucleic acid, mobilization of reserved food material, hormonal control of seedling growth, gene expression during seedling growth. Endogenous rhythms. Plant movements. Ageing and Senescence	8

23

Suggested Readings:

1. Hopkins, W.G. and Huner, A. (2008). Introduction to Plant Physiology. John Wiley and Sons. U. S.A. 4th edition.

2. Taiz, L., Zeiger, E., Moller, I.M. and Murphy, A (2015). Plant Physiology and Development. Sinauer Associates Inc. USA. 6th edition.

3. Bajracharya D. (1999). Experiments in Plant Physiology-A Laboratory Manual. Narosa Publishing House, New Delhi.

Pro	gramme/Class: M.Sc.	Year: Second	Semester: Third
		Subject: Botany	
Cou	rse Code: :: 0927902	Course Title: Phytochemistry	and Metabolism
Course	Objectives: To study the phy	tochemical logics of plant life.	
To unde	rstand the metabolism involv	ed in plant life	
How the	e reactions make possible the	plant life.	
Course	Outcomes: On successful co	mpletion of this course the students will be able to	
Learn a	nd understand mechanism inv	olved in respiration and photosynthesis, metabolism.	
Basics of	of proteins, lipids and carbohy	drate.	
	Credits: 4	Core: Compulsory	
	Max. Marks: 25+75	Minimum Passing Mark	s:
	Total No. of Lec	tures-Tutorials-Practical (in hours per week): L-T-	P: 4-0-0
Unit		Topics	No. of Lectures
I	Opportunities, Institutions a Fundamentals of thermody	workers of biochemistry, Research developments, and journals. ynamics and bioenergetics, Buffers, pH Scale, e and functions of ATP; Forces stabilizing	16
II	 Classification, mechanism of enzyme action and catalysis, Allosteric mechanism, active sites, isoenzymes, Coenzymes, steady state enzyme kinetics, Michaelis - Menten equation and its significance. Conformation of proteins: secondary, tertiary and quaternary structure; domains; motif and fold, Ram Chandran's Plot, Protein catabolism: Lysosomal and ubiquitin targeted proteolysis. 		12
III	General concept. Photosynthetic apparatus. Photosynthetic cycle, pigments.		12
	•	biosynthesis of starch and sucrose, physiological	

IV	Overview of plant respiration, glycolysis, the TCA cycle, electron transport and ATP synthesis, oxidative phosphorylation; coupled reaction group transfer biological energy transducers, Pentose phosphate pathway, glyoxylate cycle, alternative oxidase system; Structure and function of fatty acids, biosynthesis and their catabolism.	12
V	Overview of biological nitrogen fixation, nodule formation and nod factors, mechanism of nitrate uptake and reduction, ammonium assimilation, nucleotide metabolism. Sulphur uptake, transport and assimilation. Elementary idea of secondary metabolites like alkaloids, lignin and phenolics (terpenes, phenols) with emphasis on flavonoids.	8

1. Campbell, M.K. (2012). Biochemistry, 7th ed., Published by Cengage Learning.

2. Campbell, P.N. and Smith, A.D. (2011). Biochemistry Illustrated, 4th ed., Published by Churchill

Livingstone.

3. Tymoczko, J.L., Berg, J.M. and Stryer, L. (2012). Biochemistry: A short course, 2nd ed., W. H. Freeman.

4. Berg, J.M., Tymoczko, J.L. and Stryer, L. (2011). Biochemistry, W.H. Freeman and Company.

5. Nelson, D.L. and Cox M.M. (2008). Lehninger Principles of Biochemistry, 5th Edition., W.H. Freeman and Company.

6. Karp, G. (2010). Cell Biology, John Wiley & Sons, U.S.A. 6th edition.

7. Hardin, J., Becker, G., Skliensmith, L.J. (2012). Becker's World of the Cell, Pearson Education Inc.

U.S.A. 8th edition.

8. Cooper, G.M. and Hausman, R.E. 2009 The Cell: A Molecular Approach. 5th edition. ASM Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.

9. Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G. P. 2009 The World of the Cell. 7th edition. Pearson Benjamin Cummings Publishing, San Francisco.

Programme/Class: M.Sc.	Year: Second	Semester: Third
Subject: Botany		
Course Code: :: 0927903 Course Title: Stress Physiology		

Objective: Objective: This course aims to educate student on concepts of various types of stresses in crop production and strategies to overcome them.

Learning Outcome:

1. The students will understand various aspects of stress physiology such as physiological and molecular basis of abiotic and biotic stress tolerance in plants.

2. The knowledge in stress physiology will be useful for developing climate resilient genotypes for sustainable crop production.

3. Student also able to explain what basic processes and/or traits are affected by each one of the stresses.

4. Explain how the plant tissue responds at the biochemical and molecular level to each one of the stresses.

	Credits: 4	Core: Compulsory	
	Max. Marks: Minimum Passing Marks:		:
	Total No. of Leo	ctures-Tutorials-Practical (in hours per week): L-T-P	: 4-0-0
Unit		Topics	No. of Lectures
Ι	Important contribution of p developments, Opportunitie	bioneer workers of Stress Physiology, Research s, Institutions and journals.	8
Π	Biological stress vs. Physical Stress, Types of stresses and general methods of measurement of stress response (Strain), Stress physiology in crop improvement, Response to UV stress: Injury and resistance mechanism		12
ш	mechanism of resistance,	ature stress: Chilling, freezing, frost injury and Adaptations, Response to high temperature stress: sistance, Heat shock proteins, Adaptations	12

	25	
IV	Response to nutrient deficiency stress, Heavy metal stress, injury and mechanism of resistance, adaptations, Salinity stress, Ionic and salt stress injury, mechanism of resistance.	12
v	Response to water deficit: Desiccation, Dehydration injury; Mechanism of resistance, Adaptations. Response to water excess: Flooding, hypoxia, Mechanism of resistance, Adaptations, Causative agents for Biotic Stresses	8
VI	Mechanism of Resistance against Fungal, Bacterial and viral pathogens. Fire stress to forests. Mechanism involved to save the plant forests fire.	10

- 1. Levitt, J. (1981). Plant responses to environmental stresses (vol. I &II). Academic Press, New York & London.
- 2. Dwivedi & Dwivedi, (2005). Physiology of abotic stress in plants. Agro bios, India.
- 3. Kramer, P. J. (1983). Water relations of Plants. Academic Press.
- 4. Panda S.K. (2002). Advances in Stress Physiology of Plants. Scientific Publishers, Jodhpur.

Pro	ogramme/Class: M.Sc.	Year: Second	Semester: Third
	-	Subject: Botany	
Cou	urse Code: :: 0927904	Course Title: Genetic Engined	ering
Course	Course Objectives: The aim of this course is to provide a profound knowledge on the methods used in Genetic		
Enginee	ring allows students to apply t	hese in basic and applied fields of biological research	in an innovative way.
 Outli Descr expressi Conc Discu 	ne the basic steps in genetic en ribe the techniques used to prob ion. eptualize the basics and applicast the methods of protein sequences.	ly completing this course, the students could be able to geneering. Describe the mechanism of action and use be DNA for specific gene of interest and also the tech ations of genomics, proteomics and bioinformatics. Lencing, protein and metabolic engineering and their to reference and its potential for crop improvement.	of restriction enzymes. nique used to study gene
6. Outli	ne the fundamentals of genome	e editing.	
	Credits: 4	Core: Compulsory	
	Max. Marks:	Minimum Passing Mark	s:
	Total No. of Lect	ures-Tutorials-Practical (in hours per week): L-T-	P: 4-0-0
Unit		Topics	No. of Lectures
I	Important contribution of pioneer workers of Genetic engineering, Research developments, Opportunities, Institutions and journals.		12
II	Genetic Engineering (General), Restriction mapping, Restriction of Chimeric DNA- staggered cleavage, addition of oligopolymer tailing & linkers, blunt end ligation. Gene sequencing (principle & different techniques), c-DNA & genomic libraries.		12
III	DNA analysis: Labelling of DNA & RNA probes, southern & florescence in-situ hybridization, DNA fingerprinting, chromosome walking. Techniques for gene expression: Northern & western blotting, gel retardation technique, DNA footprinting, primer extension, S1 mapping, reporter assays.		12
IV	extraction/ purification techn Protein sequencing methods proteins, methods of analysis scale expression such as Mi	ant genetics, breeding & diversity studies. Protein iques viz electrophoresis & column chromatography, s, detection of post translational modifications of s of gene expression at RNA and protein level, large croarray based techniques. Protein Engineering and ition and explanation, Steps, Achievements and	12
V	potential therapy. Use of tran	ion, RNAi as tool for gene expression. RNAi as a asposons in genetic analysis: Transposons & T-DNA cation & isolation of genes. Introduction to genome SPR/Cas system.	12

- 1. Howe, C. (2007). Gene Cloning and Manipulation (2nd Edition).
- 2. Clark, D., Pazdernik, N. and McGehee, M. (2018). Molecular biology (3rd Edition).
- 3. Primrose, S. B. and Twyman, R. (2006). Principles of Gene Manipulation and Genomics (7th Edition).
- 4. Brown, T. A. (2020). Gene Cloning and DNA Analysis: An Introduction (8th Edition).
- 5. Thieman, (2020). Introduction to Biotechnology (4th Edition).

Programme/Class: M.Sc.	Year: Second	Semester: Third	
	Subject: Botany		
Course Code: :: 0927906	course Title: Biodiversity, conservation and Plant resources		
Course Objectives: To provide the l resources.	knowledge of the biodiversity conservation of plants ar	nd sustainable use of plant	
	completion of this course the students will be able to		
• Lean about diversity of	• Lean about diversity of life.		
• Know how to conserve t	the plants		
• Sustainable use of plant	resources.		
Credits: 4	Core: Compulsory		
Max. Marks: 25+75	Minimum Passing Mar	ks:	
Total No. of Leo	ctures-Tutorials-Practical (in hours per week): L-T	-P: 4-0-0	
Unit	Topics	No. of Lectures	

Unit	Topics	No. of Lectures

Ι	Important contribution of pioneer workers of this field, Research developments, Opportunities, Institutions and journals.	8
п	 Biodiversity: Definition; factors responsible for determination of Biodiversity; Global concern over climate change. Levels of Biodiversity: Genetic, Species, Ecological, Evolutionary and Agrobiodiversity. Diversity Measures: (Diversity Indices)- Alpha(α), Beta (β), Gamma(γ) Diversity. 	8
ш	 Biodiversity Conservation Initiatives a) In situ Stratagy: National parks, Wild life sanctuaries, biosphere reserves and world heritage sites. b) Ex-situ Stratagy: By seeds, reclamation, Afforestation, tree Plantation, seed banks, gene banks, cryobanks 	12
	c) General account of activities of BSI, NBPGR for conservation and non-formal conservation effortsd) Restoration or Rehabilitation of Endangered species.	
IV	Biodiversity at world level: Biodiversity at global and country level, wild plant wealth. Ecosystem diversity in India: Desert, forest, Grassland ecosystem, wetland, Mangroves. Species Diversity: Endemic species, cultivated plants/Agro- diversity, Endangered plants.	12
V	Loss of Biodiversity: a) Causal factors – Developmental pressure, encroachment, exploitation, human induced and natural floods, earthquake, cyclone, landslides, Disaster management. b) Threat to Ecosystem, species and genetic Diversity. Categories of threats: Endangered, Vulnerable, Rare and Threatened	12
VI	Plant resources, Concept, Status and Concern Basic concepts of local plant diversity and its economic importance World centers of primary diversity of domesticated plants Biodiversity protection laws and policies, management of natural resources.	8

1. Primack, (2014). Essentials of Conservation Biology, 6th ed. Sinauer.

2. Groom, (2005). Principles of Conservation Biology, 3rd ed. Sinauer.

3. van Dyke (2008). Conservation Biology, 2nd ed. Springer.

4. Singh, J.S., Singh, S.P., Gupta, S. (2006). Ecology Environment and Resource Conservation. Anamaya Publications, New Delhi, India.

Pro	ogramme/Class: M.Sc.	Year: Second	Semester: Fourth
		Subject: Botany	
Cou	urse Code: : : 1027901	Course Title: Pharmacognosy	
Course identific Course 1. to kn 2. to kn 3. know	Objectives: To study the fund cation and evaluation, phytoch Outcomes: Upon completion ow the techniques in the culti ow the crude drugs, their uses the evaluation techniques for	amentals of Pharmacognosy like scope, classification of emicals present in them and their medicinal properties. on of the course, the student shall be able vation and production of crude drugs s and chemical nature	crude drugs, their
	Max. Marks: 25+75	Minimum Passing Marks	:
	Total No. of Lect	tures-Tutorials-Practical (in hours per week): L-T-P	: 4-0-0
Unit		Topics	No. of Lectures
I		d development of Pharmacognosy. Phytochemical and eview of Azadirahcta indica, Asparagus Ocimum	12
п	Types of Plant drugs from ve		16
III		eproductive parts and their Pharmacognostic study rthamus, Spilanthes , Mucuna	16
IV	Biological methods of evalu A brief account of various alkaloids, flavinoids, Tann	Organoleptic, Microscopic, Physical, Chemical and ation drug constituents: Carbohydrates, Cardiac glycosides, ins volatile oils, resins quinines and steroids with a gum, Phyllanthus, Coleus, Asparagus, Rauvolfia	16

Evans, W. C. (2009). Trease and Evans Pharmacognosy. 16th edition, W.B. Sounders & Co., London.

- 2. Ali, M. (2020). Pharmacognosy and Phytochemistry, CBS Publishers & Distribution, New Delhi.
- 3. Kolkata, C. K., Gokhlae, P. (2007). Text book of Pharmacognosy. 37th Edition, Nirali Prakashan, New Delhi.
- 4. Choudhary, R. D. (1996). Herbal drug industry. IstEdn, Eastern Publisher, New Delhi.
- 5. Ansari, S. H. (2007). Essentials of Pharmacognosy. IInd edition, Birla publications, New Delhi.
- 6. Pande, H. (2015). Herbal Cosmetics. Asia Pacific Business press, Inc, New Delhi.
- 7. Kalia, A. N. (2005). Textbook of Industrial Pharmacognosy. CBS Publishers, New Delhi.
- 8. Endress, R. (1994). Plant cell Biotechnology, Springer-Verlag, Berlin.
- 9. Bobbers, J., Marilyn K. S., VE Tylor. (1996). Pharmacognosy& Pharmaco biotechnology

Programme/Class: M.Sc.	Year: Second	Semester: Fourth
Subject: Botany		
Course Code: : : 1020401 Course Title: Biotechnology & Plant Tissue Culture		

Course Objectives: This course aims to help the students to attain an advanced understanding of the components of plant biotechnology and will provide an overview of genetic manipulation, its applications, GM crops, etc.

Learning Outcomes: Upon successfully completing this course, the students could be able to:

1. Conceptualize plant transformation and selection of desirable genes for crop improvement.

2. Learn the procedure for generating GM crops.

3. GM crops and products are in the market, their contributions towards food security, sustainable environment and medicine.

Credits: 4	Core: Elective
Max. Marks: 25+75	Minimum Passing Marks:

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0

Unit	Topics	No. of Lectures
I	 Pioneer workers of Biotechnology, Research developments, Opportunities, Institutions and journals. Recombinant DNA technology, basic concept in genetic engineering, tool and techniques of recombinant DNA technology. Enzymes in genetic engineering. Restriction enzymes, DNA ligase, Polymerase, exonucleases, endonucleases, restriction endonucleases, S I nucleases, DNA ligases, reverse transcriptase and alkaline phosphatase. etc. Cloning vehicles: Plasmids, Cosmids, Lambda phage, Charon phage, shuttle vectors, 2μ DNA plasmids, yeast plasmids, M13 vector. Transposons, Primary vectors and plasmids - expression vectors. 	24
п	Selection of genes, Gene libraries, Genomic and cDNA library - Gene transfer methods, Genetic organization of Ti plasmids, Ti plasmid mediated transfer - Agrobacterium tumefaciens, DNA mediated transfer. Calcium phosphate, PEG, DEAE, via liposomes - Microinjection - Macroinjection, microprojectile, and electroporation, - Selection of clones, marker and reporter genes in screening methods. Hybridizations - colony, Southern, Northern, Western Blotting. Elementary Knowledge of next generation sequencing.	12
Ш	Introduction to Plant Tissue culture, Terms and definitions, Tools and techniques of plant tissue culture. Culture media, culture media preparation and sterilization, callus and suspension cultures. Organ Culture and Protoplast culture. Protoplast-Isolation regeneration and Viability test, Somatic hybridization and methods of protoplast fusion- chemical. Techniques and applications of somatic embryogenesis and regeneration of plants, anther, pollen, ovule, endosperm, hairy root cultures.	12
IV	Cell/callus line selection for resistance to herbicide, stress and diseases. Role of tissue culture in rapid clonal propagation, production of pathogen - free plants and synthetic seeds. Plant transformation: Methods of gene transfer in plants. Agrobacterium and CaMV mediated gene transfer; direct gene transfer using PEG, micro injection,	12

	-
electroporation, microprojectile (biolistics) method, liposome mediated DNA delivery.	
Transgenic plants for crop improvement: Maize, Rice, Wheat, Cotton, Brinjal and	
Tomato.	

- 1. Tropp, B. E. (2012). Molecular Biology. Fourth Edition, Jones and Bartlett India Pvt. Ltd, New Delhi.
- 2. Howe, C., (2007). Gene Cloning and Manipulation. 2nd Edition.
- 3. Watson, D., Baker, T. A., Bell, S. P., Gann, A., Levine, M., and Losick, R. (2008). Molecular Biology of Gene.
- 6th Edition, Cold Spring HarborLaboratory Press Cold Spring Harbor, New York, U.S.A.
- 4. Clark, D., Pazdernik, N., McGehee, M. (2018). Molecular biology. 3rd Edition.
- 5. Freifelder, D. (1990). Molecular Biology. 2nd Edition, Narosa Publishing HouseNew Delhi.
- 6. Nicholl, D. S. T. (2008). An Introduction to Genetic Engineering. 3rd Edition.

7. Plant Molecular Biology - Genetic Analysis of Plant Development and Metabolism. Springer-Verlag, New York, London.

8. Grierson, D. and Covey, S. (1984). Plant Molecular Biology, Practical Approach. IRL Press, Oxford, Washington DC.

9. Henry, R. J. (2005). Practical Applications of Plant Molecular Biology. Chapman & Hall, London, UK.

10. Shaw, C. H. and Brown. T.A. (1988, 2020). Gene Cloning and DNA Analysis: An Introduction. 8th Edition.

11. Primrose, S. B. and Twyman, R. (2006). Principles of Gene Manipulation and Genomics. 7th Edition.

12. Tewari, K. K. and Singhal, G. S. (1997). Plant Molecular Biology and Biotechnology. Narosa Publishing House, New Delhi.

Programme/Class: M.Sc.	Year: Second	Semester: Fourth
	Subject: Botany	

Course Code: 1. 1020402 Course True: Bio entrepreneurship and Innovation	Course Code: :: 1020402	Course Title: Bio entrepreneurship and Innovation
--	-------------------------	---

Course Objectives: Impart knowledge and work experience based/case study-based training to students in the field of innovation and uses of various biology/ biotechnology-based products, goods, services employed in bio entrepreneurship.

Course Outcomes: On successful completion of this course the students will be able to:

- 1. To be able to prepare a business plan and launch career as bio- entrepreneur.
- 2. Being able to get employment in a bioindustry or a bioconsultancy

2. Being	Being able to get employment in a bioindustry or a bioconsultancy			
	Credits: 4	Core: Elective		
	Max. Marks: 25+75 Minimum Passing Marks:			
	Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0			
Unit		Topics	No. of Lectures	
I	Important contribution of p Opportunities, Institutions a	pioneer workers of this field, Research developments, nd journals.	12	
п	Entrepreneurship in the Life Development of Products in		8	
III	Integration of science, techno From Lab to land: scope in ag		12	
IV	Industrial management. Market analysis.		12	

v	Business development. Regulatory mechanisms.	8
VI	Indian bioentrepreneurial scenario. Case studies of successful bioentrepreneurs.	8

1. Rhonda, A. (2010). Six-Week Start-Up: A Step-by-Step Program for Starting Your Business, Making Money and Achieving Your Goals! Redwood City: The Planning Shop.

2. Byrne, J. A. (2011). World Changers: 25 Entrepreneurs Who Changed Business as We Knew it. New York: Penguin.

3. Edwards, S. and Edwards. (1999). Working from Home: Everything you need to Know about Living and Working under the Same Roof. New York: Penguin Putman.

Pro	gramme/Class: M.Sc.	Year: Second	Semester: Fourth
		Subject: Botany	
Cou	rse Code: :: 1020403	Course Title: r-DNA Technology	
Course	Objectives: To introduce the	students with the application of DNA Technology.	
C	• • • • • • • • •		
Course		completion of this course the students will be able to:	
	•	ransfer the DNA in biological systems. inciples of r-DNA Technology.	
	- Onderstand the basic pr	incipies of 1-DIVA reciniology.	
	Credits: 4	Core: Elective	
	Max. Marks: 25+75	Minimum Passing Marks	:
	Total No. of Lec	tures-Tutorials-Practical (in hours per week): L-T-P	: 4-0-0
Unit		Topics	No. of Lectures
		ioneer workers in this field, Research developments,	
Ι	Opportunities, Institutions a	ind journais.	8
	Genetic Engineering – Definition and explanation, restriction enzymes and		10
Π	restriction modification sys		12
		tors – Definition and explanation: plasmids, cosmids, M13 vectors, transposons vectors.	
	Artificial chromosomes as ve		
		promotors and expression cassettes, Virus expression	
	vectors, binary and shuttle		
ш	Reconstruction of chimeric DNA – staggered cleavage, addition of Oligopolymer tailing, blunt end ligation.		12
111	Cloning in bacteria vs. cloni	14	
	•	obes and their uses; labeling of probes, radioactive vs	
	non-radioactive. Techniqu	ues used in probing DNA, RNA & Protein	
	electrophoresis, Southern, N		
	Techniques of restriction ma	– Principles, techniques and modification, gene	
IV	cloning vs. PCR, applicatio		12
	• •	omosome jumping, Chromosome landing, map-based	
	cloning.	Junping, en en este innung, map oused	
	Compliment DNA, its cloni	ng and cDNA library.	

V	RFLPs & RAPD and their applications. Gene sequencing.	8
VI	 Protein Engineering- definition and explanation, Steps involved, methods used, Achievements and future prospectus. Drug designing – methods used, blocking enzyme activity, blocking hormones receptors, inhibition of DNA/RNA synthesis. Chemical synthesis vs recombinant DNA technology in protein engineering and drug designing. 	8

- 1. Altman, D.G. (2006). Practical Botany for Medical Research. London: Chapman and Hall.
- 2. Rosner, B. (2006). Fundamentals of BioBotany.
- 3. Bonita, R., R. Beaglehole and T. Kjellstrom (2006). Basic Epidemiology, 2nd Edition. World Health Organization.
- 4. Gordis, L. (2004). Epidemiology, 3rd Edition. Philadelphia.
- 5. Dunn, G. and B. Everitt (1995). Clinical BioBotany: An Introduction to Evidence-based Medicine. Edward Arnold.
- 6. Daniel, W.W. and C.L. Cross (2012). BioBotany: A Foundation for Analysis in the Health Sciences, 10th Edition. Wiley.

Programme/Class: M.Sc. Year: Second Semester: Fourth Subject: Botany Course Code: 1020404 Course Title: Elementary Knowledge of Computes and Bioinformatics Course Objectives: To give students a firm foundation in the advanced optimization techniques for the solution of the problems covered in course contents. Course Outcomes: On successful completion of this course, the students will be able to: • Develop the ability to formulate fairly complex optimization problems in the context of practical problems. • Learn the use of software computer applications. • Learn the use of software computer applications Variable Karten Core: Elective Max. Marks: 25+75 Minimum Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Opportunities, Institutions and journals. Important contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals. Important contribution of poineer workers in this field, Research developments, System & Logic Gates- Application of Number Systems (Decimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal t					
Course Code: 1020404Course Code: 1020404Course Objectives: To give students a firm foundation in the advanced optimization techniques for the solution of the problems covered in course contents.Course Outcomes: On successful completion of this course, the students will be able to:• Develop the ability to formulate fairly complex optimization problems in the context of practical problems.• Learn the use of software computer applications.• Use the DNA, RNA, Database for further applications• Opportunities, Institutions and journals.INo. of Lectures- Opportunities, Institutions and journals. <th< th=""><th>Pro</th><th>ogramme/Class: M.Sc.</th><th>Year: Second</th><th></th><th>Semester: Fourth</th></th<>	Pro	ogramme/Class: M.Sc.	Year: Second		Semester: Fourth
Bioinformatics Number System Course ∪bjectives: To give students a firm foundation in the advanced optimization techniques for the solution of the problems covered in course contents. Important contribution of this course, the students will be able to: • Develop the ability to formulate fairly complex optimization problems in the context of practical problems. • Develop the ability to formulate fairly complex optimization problems in the context of practical problems. • Learn the use of software computer applications. • Use the DNA, RNA, Database for further applications. • Use the DNA, RNA, Database for further applications • Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Topics No. of Lectures Important contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals. 8 II Computer System- Definition; Components (Input/output unit, Control Unit, Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers 12 Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software. 12			Subject: Botany		
the problems covered in course contents. Course Outcomes: On successful completion of this course, the students will be able to: Develop the ability to formulate fairly complex optimization problems in the context of practical problems. Learn the use of software computer applications. Use the DNA, RNA, Database for further applications No. of Lectures Intervention of pioneer workers in this field, Research developments, Opportunities, Institutions and journals.	Co	ourse Code: 1020404		ge of (Computes and
Course Outcomes: On successful completion of this course, the students will be able to: Develop the ability to formulate fairly complex optimization problems in the context of practical problems. Learn the use of software computer applications. Use the DNA, RNA, Database for further applications. Use the DNA, RNA, Database for further applications Terdits: 4 Core: Elective Max. Marks: 25+75 Minimum Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P; 4-0-0 Unit Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P; 4-0-0 Inimportant contribution of pioneer workers in this field, Research developments, No. of Lectures I Opportunities, Institutions and journals. 8 II Computer System- Definition; Components (Input/output unit, Control Unit, Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers 12 Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal to Binary; Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for 12	Course	Objectives: To give students	a firm foundation in the advanced optimization techni	iques	for the solution of
 Develop the ability to formulate fairly complex optimization problems in the context of practical problems. Learn the use of software computer applications. Use the DNA, RNA, Database for further applications Use the DNA, RNA, Database for further applications Credits: 4 Core: Elective Max. Marks: 25+75 Minimum Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Important contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals. Important contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals. I Computer System- Definition; Components (Input/output unit, Control Unit, Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers Number System, Binary Number System, Hexadecimal Number System, Binary Number System, Hexadecimal Number System, Binary Number System, Hexadecimal Number System, Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary; Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software. Bioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for 	the prob	lems covered in course conte	ents.		
problems. • Learn the use of software computer applications. • Use the DNA, RNA, Database for further applications • Use the DNA, RNA, Database for further applications Credits: 4 Core: Elective Max. Marks: 25+75 Minimum Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Important contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals. 0 Opportunities, Institutions and journals. 8 II Computer System- Definition; Components (Input/output unit, Control Unit, Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers 12 Number System, & Logic Gates- Application of Number System) & Conversions (Decimal to Binary, Binary to Decimal to Haxadecimal, Hexadecimal Number System, Binary Number System, Hexadecimal Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software. 12 IIII Bioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for 12	Course	Outcomes: On successful co	ompletion of this course, the students will be able to:		
problems. • Learn the use of software computer applications. • Use the DNA, RNA, Database for further applications • Use the DNA, RNA, Database for further applications Credits: 4 Core: Elective Max. Marks: 25+75 Minimum Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Important contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals. 0 Opportunities, Institutions and journals. 8 II Computer System- Definition; Components (Input/output unit, Control Unit, Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers 12 Number System, & Logic Gates- Application of Number System) & Conversions (Decimal to Binary, Binary to Decimal to Haxadecimal, Hexadecimal Number System, Binary Number System, Hexadecimal Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software. 12 IIII Bioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for 12		• Develop the ability to :	formulate fairly complex optimization problems in the	conte	xt of practical
 Use the DNA, RNA, Database for further applications Credits: 4 Core: Elective Max. Marks: 25+75 Minimum Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Topics No. of Lectures Important contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals. Important contribution: Components (Input/output unit, Control Unit, Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software. Bioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for 					-
 Use the DNA, RNA, Database for further applications Credits: 4 Core: Elective Max. Marks: 25+75 Minimum Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Topics No. of Lectures Important contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals. Important contribution: Components (Input/output unit, Control Unit, Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software. Bioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for 		• Learn the use of softw	vare computer applications.		
Credits: 4Core: ElectiveMax. Marks: 25+75Minimum Passing Marks:Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0UnitTotal No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0UnitTopicsNo. of LecturesImportant contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals.8IIComputer System- Definition; Components (Input/output unit, Control Unit., Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.12IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12					
Max. Marks: 25+75 Minimum Passing Marks: Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0 Unit Topics No. of Lectures Important contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals. 8 II Computer System- Definition; Components (Input/output unit, Control Unit, Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers 12 Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software. 12 III Bioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for 12					
Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0UnitTopicsNo. of LecturesIImportant contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals.8IIComputer System- Definition; Components (Input/output unit, Control Unit, Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.12IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12		M M h of 75			
UnitTopicsNo. of LecturesIImportant contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals.8IIComputer System- Definition; Components (Input/output unit, Control Unit., Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.12IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12		Max. Marks: 25+75	Minimum Passing Mark	ks:	
Important contribution of pioneer workers in this field, Research developments, Opportunities, Institutions and journals.8IIComputer System- Definition; Components (Input/output unit, Control Unit., Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.12IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12		Total No. of Lec	tures-Tutorials-Practical (in hours per week): L-T-	- P: 4-	-0-0
IOpportunities, Institutions and journals.8IIComputer System- Definition; Components (Input/output unit, Control Unit., Primary Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers12IIComputer System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.12IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12	Unit		Topics		No. of Lectures
Image: Interpret and the second sec		Important contribution of p	ioneer workers in this field, Research developments,		
IIStorage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers12Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.12IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12	Ι	Opportunities, Institutions a	and journals.		8
IIStorage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of Computers12Number System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.12IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12					
Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of ComputersNumber System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12		Computer System- Definiti	on; Components (Input/output unit, Control Unit., Prim	nary	
ComputersNumber System & Logic Gates- Application of Number Systems (Decimal Number System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12	Π	Storage Unit, Arithmetic and Logic Unit); Types of Memory, Generation of		ı of	12
System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.11IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12		Computers			
System, Binary Number System, Hexadecimal Number System) & Conversions (Decimal to Binary, Binary to Decimal, Decimal to Hexadecimal, Hexadecimal to Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software.11IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12		Number System & Logic	•		
Binary); Addition operation in Binary Number System; Introduction to Logic Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software. III Bioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for 12		System, Binary Number S	ystem, Hexadecimal Number System) & Conversions		
Gates(AND, OR, NOT, NAND, NOR, XOR XNOR); Introduction to Software. III Bioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for 12				1	
IIIBioinformatics - Introduction; Definition & Concept, Role of Bioinformatics, Introduction of Internet in Biology & objectivity, Services of Internet used for12					
III Introduction of Internet in Biology & objectivity, Services of Internet used for 12					
	III		1 ·	cs,	12

IV	Database System- Definition; Purpose of Database System; Advantages of Database System, Relational Database- Definition; Relational Data Model, Database- Primary Databases & Secondary Databases, Sequence Databases(EMBL, GenBank, DDBJ, SWISS-PROT, PIR, TrEMBL), Protein Family/Domain Databases (PROSITE, Pfam, PRINTS & SMART)	12
	Sequence comparison algorithm, Dynamic programming, Dot plot matrix, sequence scoring schemes (weight matrix as Identify scoring, genetic code scoring scheme chemical scoring, observed Substitution matrix and Gap penalties),Sequence database similarity searching algorithms, local alignment, global alignment, FAST A, BLAST (BLASTP, BLASTN, BLASTX, TBLASTN, TBLASTX) and similarity searching scores and their statistical interpretation	
	Motifs and Domains, algorithm for multiple alignments, Biological motifs, micro array, Phylogenetic prediction: Relationship of Phylogenetic analysis to sequence alignment, Genome complexity and phylogenetic analysis, concept of evolutionary trees. Maximum parsimony method, distance method, maximum likelihood method	

- 1. Y.Wang.Z.wang.(2023) Squence Analysis and Paralled Computing Tsinghua University press .
- 2. K.Stephen (2009) Bionformatics for system biology Springr.Press
- 3. Sharma.Vinay (2016) Text book of Bionformatics Rastogi Publication Meerut
- 4. R.Sundralingan and V.kumaresan (2000) Bionformatics Saras Publication T.N.
- 5. Ruchi Singh (2014) Bionformatics Vikas Publication .
- 6. Orpita Basu (2007) Bionformatics Oxford University Press
- 7. Pradeep.K.Sinha and Priti Sinha (2004) Computer fundamentals B.P.B Publication.

Pro	ogramme/Class: M.Sc.	Year: Second	Semester: Fourth
	<u> </u>	Subject: Botany	
Co	ourse Code: 1020405	Course Title: (iv) Biophysics	
Course	Objectives: To introduce stu	dents with biophysical concepts.	
Course	Outcomes: On successful co	ompletion of this course the students will be able to:	
•	Understand the basic ideas of	f biophysics.	
•	Learn theoretical methods an	nd practicable techniques used in plant cell.	
•	Understand how cell works a	and effect of X-ray, Ultrasound on a living cell.	
•	Ability to develop the model	s of biomolecules.	
	Credits: 4	Core: Elective	
	Max. Marks: 25+75	Minimum Passing Mark	s:
	Total No. of Lec	tures-Tutorials-Practical (in hours per week): L-T-	P: 4-0-0
Unit		Topics	No. of Lectures
I	Opportunities, Institu	a of pioneer workers in this field, Research developm tions and journals. Flow of energy in biological of ergy and its application.	
п	and thermo chemistr	ncept of temperature, laws of thermodynamics, enth y: exothermic and endothermic reactions, free endon, and kinetic theory of gases.	

ш	 Nature and propagation of light, reflection, refraction, interference, diffraction, polarization, quantum theory of light. Depletion of Oxygen Pressure with altitude, Pollutants and Ozone layer depletion, Toxicity and its effect on Bio-macromolecular Structure and Function, Physiological effects of environmental stress. 	10
IV	Introduction to Probabilistic Models, Stochastic Models of Diffusion and other Biological Applications, Markov chains with Biological Applications.	12
v	Basic principles; Different types of immunoglobulin's and antigens; Antigen- antibody interactions; complements, mechanism of generation of diverse antibodies in the same host, synthesis of antibodies; major disorders of the immune system, auto-immune diseases. Protein-DNA and Drug-DNA interaction.	
VI	 (a) X-Ray: Effects on Bio-macromolecules. (b) Gamma Radiation: Molecular effects of Gamma Radiation, Radiation Chemistry of Water, Free Radicals, Effects on Biomolecules & Molecular Structures: Radiation Effects on Proteins, Radiation Effects on Nucleic Acids, Radiation Effects on Membranes. Effects on Cells and Organelles (c) Ultraviolet Radiation: Effects on Bio-macromolecules & Molecular Structures, UV Radiation Effects on Proteins, Nucleic Acids, Cells and Organelles. (d) Alpha & Beta Radiations: Effects on Cells and Organelle's, human body. (e) Radiation Hazards & Protection: Radiation Effects and Genetics, Methods to combat ionizing, non-ionizing and particle radiations, use of radiations in cancer & other diseases. 	

- 1. Biological Effects of Radiation by Coggle J.E.. (Taylor & Francis).
- 2. Molecular Theory of Radiation Biology by Chadwick K.H. & Leenbouts H.P. (Springer Verlag)
- 3. Introduction to Radiological Physics and Radiation Dosimetry by Atlik F.H. (John Wiley)
- 4. An Introduction to Environmental Biophysics by Campbell, Gaylon S., Norman, John M. (Springer)
- 5. Textbook of Biochemistry with Clinical Correlations By Thomas M. Devlin (Wiley)
- 6. Biochemistry By Jeremy M. Berg, John L. Tymoczko & LubertStryer (W.H. Freeman)
- 7. Lehninger Principles of Biochemistry, David Lee Nelson, Michael M. Cox. (W.H. Freeman)
- 8. Principles of Biochemistry by Donald Voet, Charl, Judith G. Voet (Wiley)
- 9. Molecular Cell Biology by Harvey Lodish, Arnold Berk, Chris A. Kaiser, Monty Krieger, Anthony Bretscher, HiddePloegh, Angelika Amon, Matthew P. Scott, (W.H. Freeman),
- 10. G. B. Arfken, Mathematical methods for physicists: a comprehensive guide, 7th ed. Amsterdam ; Boston: Elsevier, 2013.
- 11. B.Rosner, Fundamentals of biostatistics,7thed. Boston: Brooks/Cole, Cengage Learning, 20 Introductory Physics, Building Understanding by Jerold Touger (Wiley)
- 12. Physics in Biology and Medicine by Paul Davidovits (Academic Press) iii. Introduction to Biological Physics for the Health and Life Sciences by Kirsten Franklin, Paul Muir, Terry Scott, Lara Wilcocks, Paul Yates
- 13. Intermediate Physics for Medicine and Biology by Russell K Hobbie, Bradley J Roth (Springer)
- 14. Essentials of Chemical Biology: Structure and Dynamics of Biological Macromolecules by Andrew D. Miller, Julian Tanner (Wiley)
- 15. An Introduction to Chemistry for Biology Students by George I. Sackheim (Pearson)

Pro	gramme/Class: M.Sc.	Year: Second	Semester: Fourth
		Subject: Botany	
Со	ourse Code: 1020406	Course Title: Industrial Microbiol	ogy
	Outcomes On successful co	s a firm foundation for industrial use of microbes. Impletion of this course, the students will be able to: work in microbial industry.	
	Credits: 4	Core: Elective	
	Max. Marks: 25+75	Minimum Passing Marks:	
	Total No. of Leo	ctures-Tutorials-Practical (in hours per week): L-T-P:	4-0-0
Unit		Topics	No. of Lectures
Ι	Important contribution Opportunities, Institut	of pioneer workers in this field, Research developments, ions and journals.	12
II	II Exploitation of microorganisms and their products, screening, strai development strategies, immobilization methods, fermentation media, ray material used in media production, antifoaming agents, buffers, downstrear processing.		v
III	IIIFermentation equipment and its uses, fermenter design, Types of fermenters and fermentations- single, batch, continuous, multiple, surface, submerged and solid state. Production of green energy from microbes and its application. Waste (solid/liquid) recycling by the microbes. Bio- accumulators (microbes)/Scavengers of metals (microbes)		d 12
IV	Industrial products f		f 12
V	acid, amino acids: glu	bes: amylase, protease. Organic acids: citric acid, acetic tamic acid, lysine. Production of alcoholic beverages: bear hanol, methane, and biogas.	

1. Pelzar, M.J. Jr., Chen E.C. S., Krieg, N.R. (2010). Microbiology: An application-based approach. Tata McGraw Hill Education Pvt. Ltd., Delhi.

2. Tortora, G.J., Funke, B.R., Case. C.L. (2007). Microbiology. Pearson Benjamin Cummings, San Francisco, U.S.A. 9th edition.

3. Frazier, W.C. (1988) Food Microbiology, McGraw Hill Inc. 4th Edition.

4. Prescott, L.M., Harley J.P., Klein D. A. (2005). Microbiology, McGraw Hill, India. 6th edition.

		<u>36</u> Subject:Botany		
Cor	irseCode: 1020407	CourseTitle:Phyto-techniques	and Biostatistics	
CourseObjectives: Togivestudentsafirmfoundationfor various Phytotechniques.				
	• •	asic elementary knowledge and application of Statis	tics in field of Biological	
Sciences			6	
CourseO	utcomes On successful com	pletion of this course, the students will be able to:		
courseo	 Develop the ability to v 	-		
	 Analyze the data 			
	Conduct the experiment	nts		
	• Help to progress the sc			
	Credits:4	Core: Elective		
	Max.Marks:25+75	MinimumPassingMark	<u>.</u>	
	TotalNo.ofLec	tures-Tutorials-Practical(inhoursperweek):L-T-P:4		
Unit		Topics	No.ofLectures	
Ι	• •	ains, their preparation and uses: Safranin, fast gr	12	
-	•	hematoxylin, iodine, cotton blue, crystal violet, ruthenium red, Janus green,		
		urmine. Microtomy: dehydration, clearing and embed	-	
		tting, dewaxing.Collection and preparation of herbar	lum	
	-	d storage of plant materials	•	
		nciple and Methods of fractionation- Cell sort ectrophoresis, Centrifugation, X- ray diffract		
II	• • •	S, NMR, ESR, ORD/CD spectrometers,	12	
		: Geiger Muller & Liquid Scintillation Counters.		
		ds: immunodiffusion, immuno- electrophoresis, cro	ssed	
		is, counter- RIA, ELISA, Immunoblotting	1	
		tistics. Collection and Classification of data: Samp methods. Presentation of Data: Tabular, Graph		
III		uency Polygon, Frequency Curve, Scatter or		
	Diagram, Bar Diagram	ns, Pie Chart. Measures of central tendency - M		
		es of dispersion: Range, standard error, standard		
	deviation, co-efficient			
IV		ANOVA): Summary of steps involved in ANOVA I tests of significance: Student's t-Test, Chi-square t		
	• •	life table. Parametric and Non-parametric test.		
		e, Product rule and Binomial expansion. Probabi	lity	
T 7		Binomial and Poisson. Kurtosis. Correlation	and	
V	Regression: Types of c	correlation (linear, non-linear, positive and negative)		
	difference between corr	relation and regression.		

1. Plummer, D.T. (1996). An Introduction to Practical Biochemistry. Tata McGraw-Hill Publishing Co. Ltd. New Delhi. 3rd edition.

2. Ruzin, S.E. (1999). Plant Microtechnique and Microscopy, Oxford University Press, New York. U.S.A.

3. Ausubel, F., Brent, R., Kingston, R. E., Moore, D.D., Seidman, J.G., Smith, J.A., Struhl, K. (1995). Short Protocols in Molecular Biology. John Wiley & Sons. 3rd edition.

4. Zar, J.H. (2012). Biostatistical Analysis. Pearson Publication. U.S.A. 4th edition

5. Danniel, W.W., (1987). Biostatistics. New York, John Wiley Sons.

6. Sundarrao, P.S.S and Richards, J. (2012). An introduction to Biostatistics, 5th edition.

7. Selvin, S., (1991). Statistical Analysis of epidemiological data, New York University Press.

8. Bishop, O.N. (1966). The Principles of Modern Biology: Statistics for Biology. Houghton Mifflin Company, Boston.

9. Freedman, P. (2017). The Principles of scientific research. New York, Pergamon Press.

10. Campbell, R.C. (1998). Statistics for Biologists. Cambridge University Press.

Pro	ogramme/Class: M.Sc.	Year: Second	Semester: Fourth
	·	Subject: Botany	·
Course Code: :: 1020408 Course Title: Economic Botany and Food Security			
	Objectives: The aim of this control plants which are of various up to the second sec	burse is to provide a profound knowledge about the prouses.	ducts of economically
		lly completing this course, the students could be able of economically important plants and plant produ	
2. The		perate crops that are sources of food, beverages, s	
inu coo			
3. The	genetic and evolutionary asp	bects of different plants and their health benefits.	
	•	bects of different plants and their health benefits. Evolution to meet the demand of increasing populat	tion
	•	A	tion
	need to increase the food pro	oduction to meet the demand of increasing populat	
	Credits: 4 Max. Marks: 25+75	oduction to meet the demand of increasing populat Core: Elective	s:
	Credits: 4 Max. Marks: 25+75	oduction to meet the demand of increasing populat Core: Elective Minimum Passing Mark	s:

Total No. of Lectures-Tutorials-Practical (in hours per week): L-T-P: 4-0-0			
Unit	Topics	No. of Lectures	
I	Origin of Cultivated Plants. The work of Vavilov. The future role of Plants in relation to mankind. Cereal Crops- Wheat, Rice, Maize, Barley, Oat, Sorghum, Millets and Pseudocereals . research center, journals and contribution of Indian Scientists.	12	
Ш	Legumes or Pulses-Pea, Gram, Pigeon pea, Lentil, Black and Green gram. Fibres and Fibre yielding plants- Classification of fibres. Cotton, Flex, Hemp, Jute, Sann or Sunn hemp, Coir, Kapok.	12	
III	Oil yielding plants- Classification of vegetable oil. Methods of oil extraction. Groundnut, Mustard, Common olive, Coconut, Castor, Cottonseed, Soya bean, Sesame. Petro-crops: our future fuel.	12	
IV	 Spices, Condiments and other flavourings- Classification of Spices Ginger, Turmeric, Cinnamon, Clove, Black pepper, Coriander, Cumin, Chillies, Fennel, Cardamom, Saffron. Medicinal Plants- Drug plants, Drugs obtained from Roots, Stems, Barks, Leaves, Flowers, Fruits and Seeds, Alkaloids and Cancer. 	12	
V	Food Safety and Security- Functions of FSSAI, Sanitary Parameters for food service premises. Challenges and Future plan of FSSAI. Food Security in India, Schemes of Central govt for Food security. Role of cooperatives in food security. Challenges and Future prospectives.	12	

- 1. Economic Botany-A Comprehensive Study by S. L. Kochhar. 5th Edition, Cambridge University Press, 4843/24,2nd Floor, Ansari Road, Daryaganj, Delhi 110002, India
- 2. Plants and Human Welfare by O. P. Sharma, Pragati Prakashan, Meerut.
- 3. Economic botany : principles and praetiees / edited by Gerald E. Wickens. SPRINGER SCIENCE+BUSINESSMEDIA, LLC.
- 4. DEV, S. MAHENDRA, KANNAN, K.P. AND RAMCHANDRAN, NEERA (EdS.). 2003. Towards a Food
- 5. SecureIndia: Issues and Policies. Institute for Human Development, New Delhi.
- 6. Anil Chandy Ittyerah, Food Security in India: issues and suggestions for effectiveness, IIPA, Delhi.