

## **Post-Graduation in Mathematics**

## & Pre. Ph.D. Course- Work PROGRAMME CURRICULUM & SYLLABUS

For

## **School of Mathematics**

Maa Shakumbhari University, Saharanpur

And Department of Mathematics, Affiliated Colleges Maa Shakumbhari University, Saharanpur

### Members, Board of Studies (Mathematics)

| S.No. | Name                       | Designation      | College/University                           | Signature |
|-------|----------------------------|------------------|----------------------------------------------|-----------|
| 1.    | Prof. Vinod Kumar          | Convener         | J. V. Jain College, Saharanpur               |           |
| 2.    | Prof. Sanjay Gupta         | Member           | M.S. College, Saharanpur                     |           |
| 3.    | Dr. Kamal Kishore          | Member           | K.K. Jain PG College, Khatuli, Muzaffarnagar |           |
| 4.    | Prof. Neena Aggarwal       | Member           | D.A.V. College Muzaffarnagar                 |           |
| 5.    | Prof. K.P. Singh           | Member           | C.C.R.D.College Muzaffarnagar                |           |
| 6.    | Prof. Praveen Kumar        | Member           | J. V. Jain College, Saharanpur               |           |
| 7.    | Prof. Naveen Sharma        | Member           | D.A.V. College Muzaffarnagar                 |           |
| 8.    | Prof. Mridul Gupta         | Member(External) | C.C.S. University, Meerut                    |           |
| 9.    | Prof. Shivraj Singh Pundir | Member(External) | C.C.S. University, Meerut                    |           |

### SCHOOL OF SCIENCE (MATHEMATICS) MAA SHAKUMBHARI UNIVERSITY, SAHARANPUR

### **VISION OF THE SCHOOL**

To produce such academicians with morality, global competence, vision and skilled as are necessary to meet the challenges of emerging global knowledge, economy by the power of innovation, creativity and efficient learning ability.

### **MISSION OF THE SCHOOL**

To emerge among the top institution in India within next ten years through applicability, humanity, implementing and operating dynamic-academic, administrative and functional process, for optimal use of available resources.

### **ABOUT THE SCHOOL OF SCIENCE - MATHEMATICS**

The School of Mathematics is going to establish with the objective of promoting post-graduate studies and research in Mathematics. Mathematics is the base of all sciences therefore the importance of mathematics in any curriculum is self-evident. This is the single science subject that is being used by all other disciplines, that is why its growth over the years has been phenomenal. In view of this, Mathematics at Post-Graduate level, is one of the subjects, which is going to introduce in the University since inception. M.Sc./M.A. were also started. From the academic session 2021-22 under graduation program (B.Sc./ B.A.) under NEP2020 has already been started.

### VISION

- Vision of the School of Science (Mathematics) University Campus and affiliated Colleges is to create a community of mathematical learning by promoting outstanding teaching, Indian knowledge system (IKS), deep understanding and creating global centre of excellence in research for the growth of the Nation and Humanity.
- To achieve high standards of excellence in generating and propagating knowledge in Mathematics.
- To provide sustainable environment to the students and researchers who can learn, teach, become innovator and use of mathematics for humanity.

### MISSION

- To provide an effective teaching-learning process.
- To impart world-class education in an environment of fundamental and applied research in Mathematics.
- To emerge as a global centre of digital learning, academic excellence and innovative research.
- To include innovative skills, teamwork and ethical practices among students so as to meet societal expectations.
- To provide quality education for higher studies and competitive like CSIR-UGC JRF/NET, GATE, SLET, Civil Services, Scientist, and research programme.

### **M.Sc. Mathematics Programme prerequisites**

To study this programme a student must have/ had the subject Mathematics at UG level.

### **Programme Outcomes (PO's)**

- **PO1:** Provide opportunities in higher education and development on the professional front. It also gives the opportunity for career advancement in teaching, research, and industries.
- PO2: Integration of Interdisciplinary thinking and practice.
- **PO3:** Analyse a problem, identify and define the computing requirements with respect to organizational factors appropriate to its solution, and plan strategies for their solution.
- **PO4:** Design, implement and evaluate information systems, processes, components, or programs and source cost-benefit efficient alternatives to meet desired needs, goals, and contraints.
- PO5: Deploy and use effective skills, tools, and techniques necessary for information systems practice.
- PO6: Most importantly, the program inculcates among the students the higher values which enable them to withstand the challenges of life.
- PO7: Deploy and use effective skills, tools, and techniques necessary for information systems practice.
- **PO8:** Effectively communicate about their field of expertise on their activities, with their peer and society at large, such as, being able to comprehend and write effective reports and design documentation.

- **PSO1.** To develop abstract mathematical thinking so that students would be able to apply knowledge of Mathematics, in all the fields of learning, including higher research and its extensions.
- **PSO2.** To provide students with knowledge and capability in formulating and analysis of mathematical models of real-life applications/problems.
- **PSO3.** To provide comprehensive curriculum to groom the students into qualitative scientifically enriched manpower.
- **PSO3.** Carry out development work as well as take up challenges in the emerging areas of the industry.
- **PSO4.** To provide students with a knowledge, abilities and insight in Mathematics and computational techniques so that they are able to work as mathematical professional.
- **PSO5.** Inspire to crack lectureship and fellowship exams approved by UGC like CSIR NET and SET/ ISRO/DRDO so that high quality academicians and researchers can be prepared.
- **PSO6.**Victorious in getting employment in different areas, such as industries, laboratories, Banks, Insurance Companies, Educational/Research institutions, Administrative positions, since the impact of the subject concerned is very wide.
- PSO7. Encourage personality development skills like time management, crisis management, stress interviews and working as a team.

## Syllabus M.A./M.Sc. (Mathematics)

### (Effective from 2023-24)

### (B.A./B.Sc. in Research - Mathematics) as per NEP2020

| Year             | Semeste<br>r                | Course<br>Code | Core/Elective/Value<br>Added                       | Paper Title                                    | Theory/<br>Practical/<br>Project | Credits | Internal<br>Marks | External<br>Marks (Min<br>Marks) | Total Marks | Minimum<br>Marks<br>(INT+EXT) | Teachin<br>Theory + |         |
|------------------|-----------------------------|----------------|----------------------------------------------------|------------------------------------------------|----------------------------------|---------|-------------------|----------------------------------|-------------|-------------------------------|---------------------|---------|
|                  |                             | 0720301        | Core Compulsory                                    | Abstract Algebra                               | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
|                  |                             | 0720302        | Core Compulsory                                    | Real Analysis                                  | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
|                  | Semester-<br>VII as         | 0720303        | Core Compulsory                                    | Advance Differential Equation                  | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
|                  | per<br>NEP2020<br>/Semester | 0720304        | Core Compulsory                                    | Research Methodology &<br>Computer Application | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
|                  | -I                          | 0720365        | Core Compulsory                                    | Project-I                                      | Project                          | 4       | 25                | 75(30)                           | 100         | 40                            |                     | 60      |
|                  | -                           | 0720350        | Minor Elective & Value<br>Added(for other faculty) | Quantitative Aptitude                          | Theory                           | 4       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             |         |
| Year-4           |                             | 0820301        | Core Compulsory                                    | Topology                                       | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
| as per<br>NEP/Ye |                             | 0820302        | Core Compulsory                                    | Advance Complex Analysis                       | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
| ar -1            |                             |                | Core Elective G-1                                  | Any One of the following                       |                                  |         |                   |                                  |             |                               |                     |         |
|                  | Semester                    | 0820303        |                                                    | 1. Advance Operations Research                 | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
|                  | VIII as<br>per              | 0820304        |                                                    | 2. Mechanics                                   | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
|                  | NEP2020<br>/Semester        | 0820305        |                                                    | 3. Financial Mathematics                       | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
|                  | -II                         | 0820306        |                                                    | 4. Bio Statistics                              | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
|                  |                             |                | Core Elective G-2                                  | Any One of the following                       |                                  |         |                   |                                  |             |                               |                     |         |
|                  |                             | 0820307        |                                                    | 1. Mathematical Statistics                     | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |
|                  |                             | 0820308        |                                                    | 2. Linear Algebra                              | Theory                           | 5       | 25                | 75(25)                           | 100         | 40                            | 4x15=60             | 1x15=15 |

|                                | 0820309 |                                |           | 3. Data S | tructure with C                  | Th   | eory       | 5    | 2:  | 5 7   | 5(25)          | 100 | 40 | 4x15=60 | 1x15=15 |
|--------------------------------|---------|--------------------------------|-----------|-----------|----------------------------------|------|------------|------|-----|-------|----------------|-----|----|---------|---------|
|                                | 0820310 |                                |           | 4. Dynan  | nical systems                    | Th   | eory       | 5    | 2:  | 5 7   | 5(25)          | 100 | 40 | 4x15=60 | 1x15=15 |
|                                | 0820365 | Core Com                       | pulsory   |           | Project-II                       | Pro  | oject      | 4    | 2:  | 5 7   | 5(25)          | 100 | 40 |         | 60      |
|                                |         | Core Com                       | pulsory   | Pr        | oject-I + Project-II             |      | VA-<br>DCI | 8    | 5   | 0 15  | 50(60)         | 200 | 80 |         | 120     |
|                                | 0820350 | Minor Electiv<br>Added(for oth |           | V         | edic Mathematics                 | Th   | eory       | 4    | 2:  | 5 7   | 5(25)          | 100 | 40 | 4x15=60 |         |
|                                |         |                                |           | M.A       | ./M. Sc. in Ma                   | the  | ematio     | cs a | s p | er Nl | E <b>P 202</b> | 0   |    |         |         |
|                                |         | r IX as per<br>Semester -III   | Core Elec | ctive G-1 | Any Two of the followi           | ing  |            |      |     |       |                |     |    |         |         |
|                                | 092     | 20301                          |           |           | 1. Fluid Dynamics                |      | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
|                                | 092     | 20302                          |           |           | 2. Linear Integral Equa          | tion | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
|                                | 092     | 20303                          |           |           | 3. Information Theory            |      | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
|                                | 092     | 20304                          |           |           | 4. Advanced Topology             |      | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
|                                | 092     | 20305                          |           |           | 5. Mathematical<br>Programming   |      | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
| Year -5 as per<br>NEP2020/Year | 092     | 20306                          |           |           | 6. Difference Equations          |      | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
| - 2                            |         |                                | Core Elec | ctive G-2 | Any Two of the followi           | ing  |            |      |     |       |                |     |    |         |         |
|                                | 092     | 20307                          |           |           | 1. Measure and Integrat          | tion | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
|                                | 092     | 20308                          |           |           | 2. Number Theory                 |      | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
|                                | 092     | 20309                          |           |           | 3. Advance Numerical<br>Analysis |      | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
|                                | 092     | 20310                          |           |           | 4. Applied Statistics            |      | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
|                                | 092     | 20311                          |           |           | 5. Theory of Relativity          |      | Theory     | 5    |     | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |
|                                | 092     | 20312                          |           |           | 6. Wavelet analysis              |      | Theory     | 5    | Ī   | 25    | 75(25)         | 100 | 40 | 4x15=60 | 1x15=15 |

| 0920365                                   | Core Compulsory   | Project-III                                                     | Project       | 4 | 25 | 75(30)  | 100 | 48  |         | 60      |
|-------------------------------------------|-------------------|-----------------------------------------------------------------|---------------|---|----|---------|-----|-----|---------|---------|
| Semester X as per<br>NEP2020/Semester -IV | Core Elective G-1 | Any Two of the following                                        |               |   |    |         |     |     |         |         |
| 1020301                                   |                   | 1. Fuzzy Sets and Its<br>Application                            | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020302                                   |                   | 2. Functional Analysis                                          | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020303                                   |                   | 3. An Introduction to R-<br>Software                            | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020304                                   |                   | 4. Differential Geometry                                        | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020305                                   |                   | 5. Algebraic Topology                                           | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020306                                   |                   | 6. Mathematical Modeling and Simulation                         | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
|                                           | Core Elective G-2 | Any Two of the following                                        |               |   |    |         |     |     |         |         |
| 1020307                                   |                   | 1. Partial Differential equation                                | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020308                                   |                   | 2. Mathematical<br>Cryptography                                 | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020309                                   |                   | 3. Mathematical Biology                                         | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020310                                   |                   | 4. File Structure and Data<br>Base Management                   | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020311                                   |                   | 5. Fuzzy Optimization,<br>Neural Network & Genetic<br>Algorithm | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020312                                   |                   | 6. Applied Discrete<br>Structures                               | Theory        | 5 | 25 | 75(25)  | 100 | 40  | 4x15=60 | 1x15=15 |
| 1020365                                   | Core Compulsory   | Project-IV                                                      | Project       | 4 | 25 | 75(30)  | 100 | 40  |         | 60      |
|                                           | Core Compulsory   | Project-III + Project-IV                                        | VIVA-<br>VOCI | 8 | 50 | 150(60) | 200 | 100 |         | 120     |

| PGDR                | (Post G                   | Graduate 1    | Diploma in Res  | search) in Mathematics a<br>(Effective from          | -      |            | R Pre-P | h.D. Cours | se Wor | k in Math | ematics |  |
|---------------------|---------------------------|---------------|-----------------|------------------------------------------------------|--------|------------|---------|------------|--------|-----------|---------|--|
|                     |                           | Paper<br>Code |                 | Title Paper                                          |        | Credits    |         |            |        |           |         |  |
| Year-6 as per       | Semes<br>ter XI<br>as per | 1120301       | Core Compulsory | Research Methodology &<br>MATLAB/Mathematical/Scilab | Theory | 4          | 25      | 75(25)     | 100    | 55        | 4x15=60 |  |
| NEP2020/Ŷear<br>- 1 | NEP2<br>020/Se            | 1120302       | Core Compulsory | Advance Mathematics-I                                | Theory | 6          | 25      | 75(25)     | 100    | 55        | 6x15=90 |  |
|                     | mester<br>-I              | 1120303       | Core Compulsory | Advance Mathematics-II                               | Theory | 6          | 25      | 75(25)     | 100    | 55        | 6x15=90 |  |
|                     |                           |               | Core Compulsory | Survey/Research Project                              |        | Qualifying |         |            |        |           |         |  |

### **Examination Pattern**

### **Internal Examination:**

1. One written Test of 20 Marks.(5 Marks Quiz + 15 Marks (Very Short + Short + Long Question))

2. Five Marks for Class performance/Attendance.

External Examination: Written Exam of 75 marks 3Hrs Duration.

### **External Exam Pattern(PG):**

Unit-I: Attempt all five question . Each question carry 3 marks.

Unit- II : Attempt Any Two out of three. Each Question carry 7.5 marks each.

Unit-III : Attempt Any Three out of Five. Each Question carry 15 marks each.

## External Exam<br/>Pattern<br/>(PGDR)Unit-I : Attempt any five question out of 15. . Each question carry 4 marks<br/>Unit-II : Attempt Any Two out of Six. Each Question carry 7.5 marks each.<br/>Unit-III : Attempt Any Four out of Twelve. Each Question carry 10 marks each.

### Minimum

Marks:

1. In each individual paper Forty Marks i.e. 40% for PG and 55% for PGDR in all courses.

2. Division in PG: First Division - CGPA 6.5 and Less than 10, Second division - CGPA 5.0 and less than 6.5. There is no provision of Third division.

3. Division in PGDR: First Division - CGPA 6.5 and Less than 10, Second division - CGPA 5.5 and less than 6.5. There is no provision of Third division

Equivalent Percentage = CGPA x 9.5

## Note: Percentage and Grading system applicable as per NEP2020 GO 1032/Sattar-2022-08(35)/2020, Higher Education Division -3, Lucknow Dated 20.04.2022

## Detailed Syllabus

## For

# M.A. /M.Sc. I (MATHEMATICS)

## Or

## B.A. /B.Sc. (Research) MATHEMATICS

#### COUDCE I . .

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | COURSE-I : Abstract Algebra                                                                                                                                                                                                                                                                                                                               |                                                                    |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| Programme/Class:<br>M.A./M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                                                                                                                         | Semester: First/Seventh                                            |  |  |  |  |
| Course Code: 0720301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Course Title: Abstract Algebra                                                                                                                                                                                                                                                                                                                            | Theory                                                             |  |  |  |  |
| <ul> <li>Course Objectives: Acquiring ability for defining algebraic structures, constructing substructures, analyzing a given structure, developing new structures be structures, and comparing structures.</li> <li>Course Outcomes (CO's):</li> <li>CO1.Ability to solve non-trivial problems based on various concepts in the course.</li> <li>CO2. Determining the connection and transit amid formerly studied mathematics (discrete mathematics) and advanced mathematics (advanced abstract math CO3. Ability to apply abstract algebra to solve problems in other branches of mathematics and also in other disciplines.</li> <li>CO4. Describing relationship between Abstract Algebra and other courses in mathematics.</li> <li>CO5. Understanding the dependency of results based on earlier results, and thereby developing a correct approach towards life realizing the deep connection present and future. For example, in ring theory, the ring of polynomials over a field is a gift of the division algorithm.</li> <li>CO6. Possessing pre-requisites for pursuing research in Cryptography</li> </ul> |                                                                                                                                                                                                                                                                                                                                                           |                                                                    |  |  |  |  |
| Credits: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Core Compulsory                                                                                                                                                                                                                                                                                                                                           | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |  |  |  |
| Teaching                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Hours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a                                                                                                                                                                                                                                                         | Semester                                                           |  |  |  |  |
| Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Course Topic                                                                                                                                                                                                                                                                                                                                              | No. of Lectures Hours                                              |  |  |  |  |
| Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Cauchy's theorem for finite abelian group, Cauchy's theorem for an arbitrary finite group,<br>Fundamental theorem on homomorphism of groups, Second and third law of isomorphism of groups,<br>Maximal subgroup, Composition series, Jordon Holder's theorem, Subnormal and normal series,<br>Solvable groups, Characteristic property of solvable groups | 12                                                                 |  |  |  |  |
| п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Direct products, External Direct products, Internal Direct products, Sylow <i>p</i> -subgroups, Sylow's first theorem, Double cosets, Sylow's second and third theorem, Applications of Sylow's theorem.                                                                                                                                                  | 12                                                                 |  |  |  |  |
| III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | The fundamental theorem on finite abelian groups, Invariants of finite abelian groups, Isomorphic abelian groups of order $p^n$ , non-isomorphic abelian groups of order $p^n$ , Decomposable groups. Imbedding of rings, Field of quotients of an integral domain, Maximal Ideal, Zorn's lemma, Krull's theorem, Gauss lemma.                            | 12                                                                 |  |  |  |  |

| IV                                                                                                                                                 | Field extensions, Finite field extensions, Simple field extensions, Algebraic and transcendental extensions, Minimal polynomial, Remainder theorem, Factor theorem, Primitive $n^{\text{th}}$ root of unity, Existence of a primitive $n^{\text{th}}$ root of unity, Cyclotomic polynomials                                                                                                                                                                                                                                                 | 12                |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--|--|--|--|--|
| V                                                                                                                                                  | VSplitting field, Separable extension, Perfect field, Automorphisms of a field, Group of automorphisms<br>of a field, Fixed field, Normal extensions, Fundamental theorem of Galois theory, Construction by<br>ruler and compass, Finite fields, Structure of finite fields, Subfields of finite fields.12                                                                                                                                                                                                                                  |                   |  |  |  |  |  |
| Teaching Learning Proces                                                                                                                           | eaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc                                                                                                                                                                                                                                                                                                                                                                                                 |                   |  |  |  |  |  |
| <ol> <li>Joseph A. Gallian</li> <li>Khanna, Vijay K</li> <li>Herstein, I.N.: Top</li> <li>Bhattacharya, P.E</li> <li>Lang, S.: Algebra,</li> </ol> | <ul> <li>&amp; Richard M. Foote: Abstract Algebra, Wiley, 3<sup>rd</sup> Edition, 2011</li> <li>Contemporary Abstract Algebra 9th Edition, 2019.</li> <li>&amp; Bhambri, S K A Course in Abstract Algebra, S Chand and Company Ltd; Fifth edition (2022)</li> <li>pics in Algebra, Wiley, 2<sup>nd</sup> Edition, 2006.</li> <li>S., Nagpaul, S.K. Basic Abstract Algebra (2nd Edition) Cambridge University Press, Indian Edition, 1997.</li> <li>Pearson Education 3rd Edition, 1992</li> <li>irst course in Abstract Algebra.</li> </ul> |                   |  |  |  |  |  |
| Suggested Continuous<br>Continuous internal                                                                                                        | Evaluation Methods:<br>evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |  |  |  |  |  |
| Suggested equivalent o<br>There are online co                                                                                                      | nline courses:<br>urses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-                                                                                                                                                                                                                                                                                                                                                                                                              | PG Pathshaala etc |  |  |  |  |  |
| Further Suggestions:                                                                                                                               | Further Suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |  |  |  |  |  |

|                                                                                                                                                                                                                                                                              | <b>COURSE-II : Real Analysis</b>                                                                                                                                                                                                                                                                 |                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Programme/Class:<br>M.A./M.Sc.                                                                                                                                                                                                                                               | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                                                                | Semester: First/Seventh                                                  |
| Course Code: 0720302                                                                                                                                                                                                                                                         | Course Title: Real Analysis                                                                                                                                                                                                                                                                      | Theory                                                                   |
| different branches of mathematic<br>Course outcomes:<br>CO1. To provide a topological st<br>CO2. To study the concepts of cc<br>CO3. To provide the methods fo<br>CO4. To study the concept of int<br>CO5. This course gives a wide st<br>CO6. This course lays a foundation |                                                                                                                                                                                                                                                                                                  | reas, such as quantum physics.<br>al differentiability and integrability |
| Credits: 5                                                                                                                                                                                                                                                                   | Core Compulsory                                                                                                                                                                                                                                                                                  | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40       |
| Teaching                                                                                                                                                                                                                                                                     | Hours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a S                                                                                                                                                                                              | Semester                                                                 |
| Unit                                                                                                                                                                                                                                                                         | Course Topic                                                                                                                                                                                                                                                                                     | No. of Lectures Hours                                                    |
| Ι                                                                                                                                                                                                                                                                            | Definition and existence of Riemann-Stieltjes integral. Properties of the integral, integration and differentiation, The fundamental theorem of calculus, and Integration of vector-valued functions.                                                                                            | 12                                                                       |
| П                                                                                                                                                                                                                                                                            | Sequences and series of functions. Pointwise and uniform convergence, Cauchy criterion for uniform convergence, Uniform convergence and continuity, Uniform convergence and Riemann-Stieltjes integration, Uniform convergence and differentiation, Weierstrass Approximation Theorem.           | 12                                                                       |
| III                                                                                                                                                                                                                                                                          | Power series, Algebra of power series, Uniqueness theorem for power series. Abel's and Tauber's theorems.                                                                                                                                                                                        | 12                                                                       |
| IV                                                                                                                                                                                                                                                                           | Functions of several variables, Linear transformation, Derivatives in an open subset of R <sup>n</sup> , Chain rule, Partial derivatives, Interchange of the order of differentiation.                                                                                                           | 12                                                                       |
| V                                                                                                                                                                                                                                                                            | Ordinary Fourier series. Fourier series of functions with an arbitrary period, Change of Interval and half- range series, Bessel's inequality. Parseval's equation, Convergence of Fourier series, Dirichlet's kernel and its properties, Fourier theorem, Uniform convergence of Fourier series | 12                                                                       |

Curriculum & Syllabus Post Graduation and Fourth, Fifth- & Sixth-year course Under NEP2020, Mathematics

Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc

### **Suggested Readings:**

- 1. Apostol, T. M.: Mathematical Analysis, Narosa Publishing, New Delhi, 1985
- 2. Brown. W., Churchill ,R.V., Fourier Series and Boundary Value Problems, 8<sup>th</sup> 3rd Edition, 2015, McGraw Hill Education, New Delhi
- 3. **Royden, H. L.:** Real Analysis, (4th Edition), Macmillan Publishing Co. Inc. New York, 1993.
- 4. **Rudin, W.:** Principles of Mathematical Analysis, (3rd edition) McGraw-Hill, Kogaku Sha, 1903, International student edition.
- 5. White, J.: Real Analysis, An Introduction, Addison-Wesley Publishing, Co. Inc., 1968.

#### **Suggested Continuous Evaluation Methods:**

Continuous internal evaluation through internal tests, quizzes and Presentation.

### Suggested equivalent online courses:

There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc

Further Suggestions:

|                                                                                                                                                                             | <b>COURSE-III : Advanced Differential Equation</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| Programme/Class:<br>M.A./M.Sc.                                                                                                                                              | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Semester: First/Seventh                                                                    |
| Course Code: 0720303                                                                                                                                                        | Course Title: Advanced Differential Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Theory                                                                                     |
| Course Objectives:                                                                                                                                                          | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                                          |
| 1. To explore the basic idea                                                                                                                                                | s of Differential Equations combined with some real-life problems                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                            |
| 2. Differential equations are                                                                                                                                               | e very important in the mathematical modeling of physical systems.                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                            |
| 3. Many fundamental laws                                                                                                                                                    | of physics and chemistry can be formulated as differential equations.                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                            |
| 4. In biology and economic                                                                                                                                                  | s, differential equations are used to model the behavior of complex systems.                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                            |
| concepts.<br>Course outcomes:<br>CO1. The use of the differential<br>CO2. The use of the differential<br>CO3. The use of this theory is t<br>CO4. This theory can solve man | actions are used to calculate the movement or flow of electricity, motion of an object to and fro like a pend-<br>equation theory is to solve various types of Mathematical modeling problems.<br>equation theory is to solve many problems presented in different sciences such as Biology, Chemical scie<br>o solve many real-life based problems such as population problem, control problems and networking sec<br>y engineering problems such as the exact trajectory path of a rocket or a missile. | ences and Physics.                                                                         |
| Credits: 5<br>Teaching                                                                                                                                                      | The mulate and solve differential equations arising from changes in physical world. Core Compulsory Hours = Lecture-Tutorial-Practical (L-T-P) : 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a                                                                                                                                                                                                                                                                                                    | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40                         |
|                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40                                      |
| Teaching                                                                                                                                                                    | Core Compulsory<br>Hours = Lecture-Tutorial-Practical (L-T-P) : 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a                                                                                                                                                                                                                                                                                                                                                                                     | (Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40<br>Semester                          |
| Teaching<br>Unit                                                                                                                                                            | Core Compulsory         Core Compulsory         Hours = Lecture-Tutorial-Practical (L-T-P) : 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a         Course Topic         Ordinary Differential Equations (ODEs), General theory of homogenous and non-homogeneous linear ODEs, System of first order ODEs, The method of variation of parameters, Wronskian, Sturm-                                                                                                                                | (Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40<br>Semester<br>No. of Lectures Hours |

| IV                                                                                                                                         | for first order PDEs, Origin of second order partial differential equation and their classification,<br>linear PDEs with constant and variable coefficients.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| v                                                                                                                                          | General solution of higher order PDEs with constant coefficient, Diffusion, Wave and Laplace equations by the method of separation of variables, Reduction of second order partial differential equation into its canonical form, Non-linear partial differential equations of second order.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 12 |  |  |  |  |  |
| Teaching L                                                                                                                                 | Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |  |  |  |  |
| <ol> <li>Coddington, Earl</li> <li>Rai,B., Chaudha</li> <li>Simmons, G.F.: I</li> <li>Sneddon, Ian: Ele</li> <li>Wirkus Stephen</li> </ol> | <ul> <li>Suggested Readings:</li> <li>1. Coddington, Earl A. &amp; Levinson, Norman: Theory of Ordinary Differential equations, Tata McGraw-Hill Publication.</li> <li>2. Rai,B., Chaudhary ,D.P. and Freedman, H.I.: A Course in Ordinary Differential Equations, Narosa Publishing House, New Delhi 2013.</li> <li>3. Simmons, G.F.: Differential Equations with Applications and Historical Notes, Second Edition, Tata Mcgraw-Hill Publishing Company Ltd. New Delhi (2017).</li> <li>4. Sneddon, Ian: Elements of Partial Differential Equation, McGraw-Hill Book Company.</li> <li>5. Wirkus Stephen A, &amp; Swift, Randall J.: A Course in Ordinary Differential Equations 1st Edition, CRC Press, Taylor &amp; Francis Group, 2015.</li> <li>6. Ross. S. L.: Differential Equations, 3<sup>rd</sup> Edition, Wiley. (1980)</li> </ul> |    |  |  |  |  |  |
| Suggested Continuous<br>Continuous internal                                                                                                | Evaluation Methods:<br>evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |    |  |  |  |  |  |
|                                                                                                                                            | Suggested equivalent online courses:<br>There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |    |  |  |  |  |  |
| Further Suggestions:                                                                                                                       | Further Suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                   | COURSE-IV : Research Methodology & Computer Applications                                                                                                                                                                                                                                                                                                |                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Programme/Class:<br>M.A./M.Sc.                                                                                                                                                                                                                                                    | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                                                                                                                       | Semester: First/Seventh                                            |
| Course Code: 0720304                                                                                                                                                                                                                                                              | Course Title: Research Methodology & Computer Applications                                                                                                                                                                                                                                                                                              | Theory                                                             |
| The course develops the understan<br>Course outcomes:<br>CO1: Design a good quantitative<br>CO2: Explain the epistemological<br>criteria for evaluating qualitative of<br>CO3: Design and conduct an in-co<br>case study, and a mixed-method s<br>CO4: Write a qualitative method | lepth interview study, an oral history interview study, a focus group study, ethnography, a qualitative conter                                                                                                                                                                                                                                          | as and techniques.<br>Idress a research question, and the          |
| Credits: 5                                                                                                                                                                                                                                                                        | Core Compulsory                                                                                                                                                                                                                                                                                                                                         | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |
| Teaching                                                                                                                                                                                                                                                                          | Hours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a S                                                                                                                                                                                                                                                     | emester                                                            |
| Unit                                                                                                                                                                                                                                                                              | Course Topic                                                                                                                                                                                                                                                                                                                                            | No. of Lectures Hours                                              |
| I                                                                                                                                                                                                                                                                                 | Meaning of Research, Purpose, Characteristics and Types of Research, Process of Research,<br>Formulation of objectives, Formulation of Hypotheses, Types of Hypotheses, Methods of testing<br>Hypotheses, Research plan and its components, Methods of Research (Survey, Observation, case<br>study, experimental, historical and comparative methods). | 12                                                                 |
| П                                                                                                                                                                                                                                                                                 | Scientific research and literature survey, History of mathematics, finding and solving research problems, role of a supervisor, a survey of a research topic, publishing a paper, reviewing a paper, research grant proposal writing, copyright issues, ethics and plagiarism.                                                                          | 12                                                                 |
| III                                                                                                                                                                                                                                                                               | Research tools: Searching google (query modifiers), MathSciNet, ZMATH, Scopus, ISI Web of Science, Impact factor, h-index, Google Scholar, ORCID, JStor, Online and open access journals, Virtual library of various countries.                                                                                                                         | 12                                                                 |

| IV       Computer Networking, Internet, Web Browsers, Search Engines, MS Word: Handling graphics tables and charts, Formatting in MS-Word, MS PowerPoint: Creating Slide Show, Screen Layout and Views, Applying Design Template, MS Excel: Features, Formulas and Functions, Data Analysis and Data Visualization in Excel.       12 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| V                                                                                                                                                                                                                                                                                                                                     | Scientific writing and presentation, writing a research paper, survey article, thesis writing; LaTex, PS Tricks etc., Software for Mathematics: Mathematica /MATLAB /Scilab/GAP.                                                                                                                                                                                                                                                                                                                                                                       | 12                                                                                                                        |  |  |  |  |  |
| Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |  |  |  |  |  |
| <ol> <li>Kumar. R: Research Met</li> <li>Nicholas J. Hingham, Ha</li> <li>Norman E. Steenrod, Par</li> <li>Lamport. L., LaTeX, a D</li> </ol>                                                                                                                                                                                         | L. Larrabee, and Paul M. Roberts, Mathematical Writing, Mathematical Association of America, Washingto<br>hodology: A Step- b y - S t e p Guide for Beginners, (3 <sup>rd</sup> Edition), SAGE, Inc., 2011.<br>ndbook of Writing for the Mathematical Sciences, Second Edition, SIAM, 1998.<br><b>ul R. Halmos, Menahem M. Schiffer, Jean A</b> . How to Write Mathematics, American Mathematical Societ<br>ocument Preparation System, 2nd Ed., Addison-Wesley, 1994.<br>age of ICT: Information and CommunicationTechnology, Taylor & Francis, 2016. |                                                                                                                           |  |  |  |  |  |
| Suggested Continuous Evalua                                                                                                                                                                                                                                                                                                           | tion Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation. |  |  |  |  |  |
| Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                           |  |  |  |  |  |

| Programme/Class:<br>M.A./M.Sc.                                      | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                               | Semester: First/Seventh                                            |
|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Course Code:                                                        | Course Title: QUANTITATIVE APTITUDE                                                                                                                                                             | Theory                                                             |
| <b>Course outcomes:</b><br><b>CO1</b> .For Encourage the interest i | his course is to develop fast mathematical thinking and computational skills.<br>n Mathematics for other student rather than Science students.<br>f NET Exam and other competitive examinations |                                                                    |
| Credits: 4                                                          | MINOR ELECTIVE                                                                                                                                                                                  | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |
| Teaching Hou                                                        | rs = Lecture-Tutorial-Practical (L-T-P): 4-0-0 (Four Hours in a week) or 60 Lecture Hours in a                                                                                                  | Semester                                                           |
| Unit                                                                | Course Topic                                                                                                                                                                                    | No. of Lectures Hours                                              |
| I                                                                   | Simplifications, Percentage, Profit & Loss, Simple Interest, Compound Interest, H.C.F.& L.C.M.,<br>Mixed Problems.                                                                              | 15                                                                 |
| Π                                                                   | Introduction of Equations, Simple Equation, Problems on S.E., Linear Equations, Problems on L.E.,<br>Quadratic Equations, Problems on Q.E.                                                      | 15                                                                 |
| III                                                                 | Problems On Number, Problem on Ages, Number System, Applications of Number System.                                                                                                              | 15                                                                 |
| IV                                                                  | Height &Distance, Progressions, Arithmetic Progression, Geometric Progression, Harmonic Progression, Applications of Progressions.                                                              | 15                                                                 |
|                                                                     | ass discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignmer<br>s a minor elective course by the students of following subjects: Arts and Commerce  | ts, etc                                                            |
|                                                                     | tative Aptitude for Competitive Exam, (S. Chand)<br>ative Aptitude for Competitive Exam, (Mc, Graw. Hill Education)                                                                             |                                                                    |

### Suggested equivalent online courses:

There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala, <u>www.vedicganita.org</u> by Dr. S.K.Kapoor, **vedic-ganit-certificate-course-in-hansraj college** 

Further Suggestions:

Г

|                                                                                                                                                                                                                                                                                                  | <b>COMPULSORY COURSE-I : Topology</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| Programme/Class:<br>M.A./M.Sc.                                                                                                                                                                                                                                                                   | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Semester: Second/Eight                                                                                           |
| Course Code: 0820301                                                                                                                                                                                                                                                                             | Course Title: Topology                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Theory                                                                                                           |
| the theory of metric and<br>that metric spaces are r<br>compact or complete.Met<br><b>Course outcomes:</b><br><b>CO1:</b> To show how the the<br><b>CO2:</b> Differentiate between<br><b>CO3:</b> Use the Banach fixed<br><b>CO4:</b> Apply the theory in t<br><b>CO5:</b> Metric spaces are vit | ct is to gain proficiency in dealing with abstract concepts, with emphasis on clear explanations of such a topological spaces; to show how the theory and concepts grow naturally from idea of distance; to be able nore general than Euclidean spaces; to be able to work with continuous functions, and to recognize etric spaces are vital prerequisites for many mathematics courses including Analysis, Topology, Measure ory and concepts grow naturally from idea of distance in functions that define a metric on a set and those that do not. I point theorem to demonstrate the existence and uniqueness of solutions to differential equations he course to solve a variety of problems at an appropriate level of difficulty al prerequisites for many mathematics courses including Analysis, Topology, Measure Theory, Complex ally compact spaces, Countable compactness, BWP and compactness and explain the relation between the | e to give examples which show<br>whether spaces are connected,<br>Theory, Complex Analysis etc.<br>Analysis etc. |
| Credits: 5                                                                                                                                                                                                                                                                                       | Core Compulsory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Max Marks<br>(Int. + Ext.): 25+75 Total = 10<br>Minimum Marks: 40                                                |
| Teaching                                                                                                                                                                                                                                                                                         | Hours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | a Semester                                                                                                       |
| Unit                                                                                                                                                                                                                                                                                             | Course Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. of Lectures Hours                                                                                            |
| I                                                                                                                                                                                                                                                                                                | Product spaces, Structure of open balls in a product space, Closures and interiors in a product space,<br>Finite product of metric spaces. Contraction Mapping Principle, Baire's Category Theorem,<br>Connectedness: Connected metric spaces, Connected sets, Characterization of connected subsets of<br>the real line, Properties of connectedness.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                               |
|                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                  |

| II Convergent sequences, Cauchy sequences, Characterization of adherent points and limit points in terms of convergent sequences, Convergence in products, Convergence in Euclidean spaces, Cluster points of a sequence, Subsequence, Cluster points and convergent subsequences, Algebra of convergent real sequences, Spaces of sequences. | 12 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|

|                                  | ш                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Definition and examples of topological space, Closed sets, Closure, Dense subset,<br>Neighbourhoods, Interior, Exterior, Boundary and accumulation points, Derived sets, Bases and<br>sub-bases, Subspaces, Product spaces and relative topology. | 12                               |  |  |  |
|----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--|--|--|
|                                  | IVContinuous functions, Homeomorphisms, The Pasting lemma, Connected and disconnected<br>sets, Connectedness on the real line, Components, Locally connected spaces. Countability<br>axioms – First and second countable spaces, Lindelof's Theorems, Separable spaces, Second<br>countability and Separability.12                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                   |                                  |  |  |  |
|                                  | VCompact spaces and compact subsets, Compact subsets of the real line, Sequential compactness<br>and its characterization, Countable compactness, Bolzano-Weierstrass Property (BWP),<br>Sequential characterization of BWP, Equivalence of BWP and sequential compactness, Covering<br>characterization of the BWP, BWP and total boundedness, BWP and compactness, Lebesgue<br>covering lemma, Compactness and completeness, Compactness and uniform continuity,<br>Boundedness of continuous real-valued functions on compact metric spaces.12 |                                                                                                                                                                                                                                                   |                                  |  |  |  |
|                                  | Teaching Learnin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | g Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activiti                                                                                                                                          | es/ assignments, etc             |  |  |  |
| 1.<br>2.<br>3.<br>4.<br>5.<br>6. | <ol> <li>Copson, E.T: Metric Spaces, Cambridge tracts, 2010.</li> <li>Dieudonne ,J.: Foundation of Modern Analysis, Academic Press, New York, 1960.</li> <li>Kasriel ,R. H.: Metric Spaces, Dover Publications, New York, 2009.</li> <li>Munkres. James.: Topology, 2<sup>nd</sup> Edition, Pearson Education, 2021.</li> <li>Kumaresan S. Topology of Metric Spaces, 2<sup>nd</sup> Edition, Narosa (2011).</li> </ol>                                                                                                                           |                                                                                                                                                                                                                                                   |                                  |  |  |  |
| Suggeste                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | raluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.<br>ne courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL.                                               | E-contents from different online |  |  |  |
| Further                          | Suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                   |                                  |  |  |  |

|                                                                                                                                                                 | <b>COMPULSORY COURSE-II : Advanced Complex Analysis</b>                                                                                                                                                                                                                                                                                                                                                |                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Programme/Class:<br>M.A./M.Sc.                                                                                                                                  | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                                                                                                                                                                      | Semester: Second/Eight                                             |
| Course Code: 0820302                                                                                                                                            | Course Title: Advanced Complex Analysis                                                                                                                                                                                                                                                                                                                                                                | Theory                                                             |
| complex variable, and to show how<br>Course outcomes:<br>CO1. Know the fundamental conc<br>CO2. Prove the Cauchy-Riemann of<br>CO3. Extend their knowledge to p | equations and apply them to complex functions in order to determine whether a given continuous function is continuous function is continuous function.                                                                                                                                                                                                                                                 | -                                                                  |
| Credits: 5                                                                                                                                                      | Core Compulsory                                                                                                                                                                                                                                                                                                                                                                                        | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |
| Teaching He                                                                                                                                                     | ours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a Ser                                                                                                                                                                                                                                                                                                   | nester                                                             |
| Unit                                                                                                                                                            | Course Topic                                                                                                                                                                                                                                                                                                                                                                                           | No. of Lectures Hours                                              |
| Ι                                                                                                                                                               | Complex integration, Regular Arc, Contour, Cauchy-Goursat theorem, Simply connected domains,<br>Multiply connected domains, Cauchy's integral formula, An extension of the Cauchy's integral formula,<br>Significance of Cauchy's integral formula, Morera's Theorem, Cauchy's inequality, Liouville's theorem<br>and its applications, The fundamental theorem of Algebra, Maximum modulus principle. | 12                                                                 |
| II                                                                                                                                                              | Properties and classifications of bilinear transformations, Bilinear transformation as conformal mappings, Riemann- Mapping Theorem, Examples of conformal mappings, Meromorphic functions, Entire functions, Taylor's theorem and its applications, Laurent's Theorem and its applications.                                                                                                           | 12                                                                 |
| ш                                                                                                                                                               | Singularities, Categorization of Singularities using Laurent's series, Isolated singularities, Residues, Cauchy's residue theorem, Evaluation of integrals, Many valued functions, branch points, branch cuts and branches of many valued functions, and with special reference to arg z, log z and z <sup>a</sup> , The argument principle, Rouche's theorem.                                         | 12                                                                 |
| IV                                                                                                                                                              | Weierstrass' factorization theorem, Gamma function and its properties, Riemann zeta function,<br>Riemann's functional equation, Mittag-Leffler's expansion theorem and its applications, Analytic<br>continuation, Uniqueness of direct analytic continuation, Uniqueness of analytic continuation along a<br>curve, Power series method of analytic continuation.                                     | 12                                                                 |

Curriculum & Syllabus Post Graduation and Fourth, Fifth- & Sixth-year course Under NEP2020, Mathematics

| V                                                                                                                                                                                     | Canonical products, Jensen's formula, Poisson-Jensen formula, Hadamard's three circles theorem,<br>Order of an entire function, Exponent of convergence, Borel's theorem, Hadamard's factorization<br>theorem.                                                                                                                                            | 12             |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|--|--|
| Teaching Learning                                                                                                                                                                     | Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ ass                                                                                                                                                                                                                                             | signments, etc |  |  |
| <ol> <li>Brown, J., Churchill, R.</li> <li>Conway, J. B.: Function</li> </ol>                                                                                                         | <ol> <li>Ahlfors, L.V.: Complex Analysis, McGraw Hill Education; 3rd Edition, 2017.</li> <li>Brown, J., Churchill, R.V.: Complex Variable and Applications, McGraw-Hill Education; 9th Edition, 2013.</li> <li>Conway, J. B.: Functions of One Complex Variable, Springer-Verlag, International student Edition, 2<sup>nd</sup> Edition, 1996.</li> </ol> |                |  |  |
| Suggested Continuous Evalua                                                                                                                                                           | tion Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                            |                |  |  |
| Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc |                                                                                                                                                                                                                                                                                                                                                           |                |  |  |
| Further Suggestions:                                                                                                                                                                  | Further Suggestions:                                                                                                                                                                                                                                                                                                                                      |                |  |  |

|                                                                                                                                                                                                                                             | Core-Elective (Group-I) COURSE-III : Advanced Operations Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Programme/Class:<br>M.A./M.Sc.                                                                                                                                                                                                              | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Semester: Second/Eight                                             |  |  |  |
| Course Code: 0820303                                                                                                                                                                                                                        | Course Title: Advanced Operations Research                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Theory                                                             |  |  |  |
| problems in the areas of line<br>methods for optimization prob<br><b>Course outcomes:</b><br><b>CO1:</b> Apply the knowledge of<br>linear programming problems<br><b>CO2:</b> Understand the theoret:<br><b>CO3:</b> Extend their knowledge | Problems in optimization are the most common applications of mathematics. The main aim of this course is to present different methods of solving optimization problems in the areas of linear programming, inventory and queuing theory. In addition to theoretical treatments, there will be some introduction to numerical nethods for optimization problems.                                                                                                                                                                                     |                                                                    |  |  |  |
| Credits: 5                                                                                                                                                                                                                                  | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |  |  |
| Teaching H                                                                                                                                                                                                                                  | lours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in                                                                                                                                                                                                                                                                                                                                                                                                                                                     | a Semester                                                         |  |  |  |
| Unit                                                                                                                                                                                                                                        | Course Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | No. of Lectures Hours                                              |  |  |  |
| Ι                                                                                                                                                                                                                                           | Sequencing theory, Processing of n-jobs through two machines, three machines and m machines,<br>Graphical Method. Transshipment Problems, Optimal solution, Stepping Stone Method, Crew<br>Assignment problem, Travelling Salesperson's problem. Simulation: Introduction, Methodology of<br>simulation, Basic concepts, Simulation procedure, Applications of simulation.                                                                                                                                                                          | 12                                                                 |  |  |  |
| II                                                                                                                                                                                                                                          | Replacement: Replacement of items that deteriorate, Problems of choosing between two machines, Problems in mortality and staffing, Introduction to Inventory Systems: Analytical structure of Production and Inventory problems. Objectives of Inventory management. Factors influencing inventories. Inventory related costs. Properties of Inventory systems. Selective Inventory control techniques and its applications. Concept of Lead time, VED and ABC analysis, Different types of demand pattern. Concept of deterioration and shortages. | 12                                                                 |  |  |  |

| III                                                                                                                                                                                   | Network analysis – Construction of the network diagram, Critical path – float and slack analysis,<br>Total float, Free float, Independent float, Shortest-path problem, Minimum spanning tree<br>problem, Maximum flow problem, Minimum cost flow problem, Project planning and control<br>with PERT/CPM Programme Evaluation Review Technique (PERT), Project Time Crashing.<br>Queuing theory: Steady state solution of queuing models, Service system, Single channel models,<br>Multiple services channels M/M/1, M/M/C models. | 12                        |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| IV                                                                                                                                                                                    | Introduction to Game Theory, Principles of decision making, Two person Zero – sum game,<br>Pure strategy, Saddle point, Dominance Rule, Mixed strategy, Reduction of m * n game and<br>solution of 2*2, 2*s and 2*2 cases by Graphical and Algebraic methods and formulation to<br>Linear Programming Problem (LPP). Sub- game method, Graphical solutions, Iterative<br>method, Solutions by linear programming,                                                                                                                   | 12                        |
| V                                                                                                                                                                                     | Non-Linear Programming, Kuhn-Tucker Optimality condition, Quadratic programming: Wolfe's method. Integer programming: Modeling using pure and mixed integer programming: Branch and Bound Techniques. Gomory's cutting plane algorithm, Sensitivity Analysis, Linear goal programming: Modeling using goal programming.                                                                                                                                                                                                             | 12                        |
| Teaching Learn                                                                                                                                                                        | ing Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activitie                                                                                                                                                                                                                                                                                                                                                                                                                         | es/ assignments, etc      |
| <ul> <li>WSE (2004) et</li> <li>2. Bertsekas, D.</li> <li>3. Hadley, G.: Li</li> <li>4. Hillier, F.S. a Engineering St</li> <li>5. Rao, S.S.: Op</li> <li>6. Swarup, K., O</li> </ul> | <b>P.</b> Nonlinear Programming, 2nd Edition., Athena Scientific, 1999.<br>inear Programming, Narosa Publishing House, 1995.<br><b>Ind Lieberman, G.J.:</b> Introduction to Operations Research (6 <sup>th</sup> Edition),McGraw Hill International Edition                                                                                                                                                                                                                                                                         |                           |
|                                                                                                                                                                                       | <b>Evaluation Methods:</b> Continuous internal evaluation through internal tests, quizzes and Presentation.<br><b>Inline courses:</b> There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. thshaala etc                                                                                                                                                                                                                                                                                                 | E-contents from different |
| Further Suggestions:                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |

|                                                                                                                                                                                                                                                                          | <b>Core-Elective (Group-I) COURSE-III : Mechanics</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Programme/Cla<br>M.A./M.Sc.                                                                                                                                                                                                                                              | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Semester:Second/Eight                                                                                           |
| Course Code: 082                                                                                                                                                                                                                                                         | 0304 Course Title: Mechanics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Theory                                                                                                          |
| mechanics intended f<br>Course outcomes:<br>CO1. To distinguish f<br>CO2. To frame the m<br>problem.<br>CO3. To understand f<br>CO4. To differentiate<br>CO5. To determine t<br>systems with ease.<br>CO6. To identify the<br>CO7. To apply funda<br>CO8. To use advance | st branch of the Physics discipline and is as well important in the discipline of Mathematics. It is actual<br>or mathematics majors. The core is the new formulation of mechanics and the substantial range of new<br>between inertia frame of reference and non-inertial frame of reference.<br>athematical constraints on the bases of physical restrictions imposed on a system, which simplifies the<br>he mechanics of a system of particles falling under classical mechanics.<br>between Newtonian, Lagrangian, Hamiltonian and Routhian approach of solving a mechanical probler<br>he Lagrangian and Hamiltonian of mechanical systems and use these functions to obtain the solution<br>conserved quantities, if any, associated with the mechanical system.<br>mental conservation principles to analyze mechanical systems.<br>d theoretical techniques to solve mechanical problems like use of canonical transformations, variational<br>c's Brackets and Lagrange's Brackets to solve mechanical problems. | techniques in the applications.<br>process of solution of a physical<br>m.<br>ns of even complicated mechanical |
| Credits: 5                                                                                                                                                                                                                                                               | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40                                              |
| Tea                                                                                                                                                                                                                                                                      | ching Hours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lours in a Semester                                                                                             |
| Unit                                                                                                                                                                                                                                                                     | Course Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No. of Lectures Hours                                                                                           |
| Ι                                                                                                                                                                                                                                                                        | Introduction to the system of particles, Conservation laws for the system of particles, general coordinates, Virtual displacements, Constraints and constrained motion, classification of constrained Holonomic versus non-holonomic systems, Scleronomic versus rheonomic systems, Degree of Free generalized velocity, generalized acceleration, generalized potential, generalized momentum (Conj momentum), Generalized force. Lagrangian Mechanics: Physics in configuration space with general coordinates as independent variable, Definition of the Lagrangian, Euler-Lagrange equations of m Derivation of Euler-Lagrange equations from differential principle i.e., by D' Alembert's principle, S applications of the Lagrangian formulation to systems with holonomic and non-holonomic constraints                                                                                                                                                                                                            | raints:<br>edom,<br>jugate 12<br>alized<br>otion,<br>imple                                                      |

| Hamiltonian mechanics: physics in phase space with generalized coordinates and momenta treated as<br>independent variables. Definition of the Hamiltonia (through Legendre's transformation) and its relation<br>to the energy, Hamilton's canonical equations in cylindrical and spherical coordinates as well, Hamilton's<br>principle, Derivation of Hamilton's equations by integral principle i.e. by D'Alembert's principle, Derivation of Hamilton's equations of<br>motion. Cyclic (ignorable) coordinates and conservation laws. Routhian Mechanics: Definition of<br>Routhian. Routh's equations of motion and energy function Principle of least action.12IIIVariational Calculus and its Application to Mechanics: Euler's equation for functions of one dependent<br>variable and its generalization to (i) "n' dependent variables (ii) higher order derivatives, Applications of<br>revolution, Brachistochrone problem, Isoperimetric problem, Geodesic, Lagrange's multiplier method.12IVTheoretical Mechanics: Cononical transformation of the Hamiltonian of mechanics in<br>phase pace. Four types of generating functions, Poisson Brackets.12VHamilton Jacobi theory: Hamilton Jacobi equations, Jacobi Hoerem, Jacobi-Poisson theorem,<br>Lagrange Brackets with respect to canonical<br>transformations, Relation between Poisson and Lagrange Brackets.12Suggested Readings:<br><ul><li>Celfand J.M., Fomin S.V. and Silverman, R.A.: Calculus of Variations, Prentice Hall, 2000</li><li>Coldstein, H.: Classical Mechanics (3rd Edition), Pearson New International Edition, 2014, ISBN 13: 9780201657029/ ISBN 10: 0201657023</li><li>Rana, N.C. and Joag, P.S.: Classical Mechanics, Tata McGraw Hill, New Dehli, 1991. ISBN-10: 0074603159/ ISBN 10: 0201657023</li><li>Rana, N.C. and Joag, P.S.: Classical Mechanics, Tata McGraw Hill, New Dehli, 1991. ISBN-10: 0074603159/ ISBN 10: 0201657023</li><li>Ruana, N.</li></ul> |                       | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | I                         |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
| III       variable and its generalization to (i) "n" dependent variables (ii) higher order derivatives, Applications of calculus of variation: Shortest distance between two points on a plane, Minimum surface of revolution, Brachistochrone problem, Isoperimetric problem, Geodesic, Lagrange's multiplier method.       12         IV       Theoretical Mechanics: Canonical transformation of the Hamiltonian formulation of mechanics in phase space. Four types of generating functions, Poisson Brackets: their definition and their elementary properties. Equations of motion in Poisson and Lagrange Brackets with respect to canonical transformations, Relation between Poisson and Lagrange Brackets.       12         V       Hamilton Jacobi theory: Hamilton Jacobi equation, Jacobi theorem, Method of separation of variables in Hamilton Jacobi equation and its simple applications.       12         Suggested Readings:       1.         1. Gelfand J.M., Fomin ,S.V. and Silverman ,R.A.: Calculus of Variations, Prentice Hall,2000       12.         2. Goldstein, H.: Classical Mechanics, Tata McGraw Hill, New Delhi, 1991. ISBN 13: 9780201657029/ ISBN 10: 0201657023       13.         3. Rana, N.C. and Joag, P.S.: Classical Mechanics, Tata McGraw Hill, New Delhi, 1991. ISBN-10: 0074603159/ ISBN-13: 9780074603154       5000074603154         Suggested equivalent online courses: There are online courses on the channels such as Savayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-FG Pathshaala etc       5000074603154                                                                                                                                                                                                                                                                                                                                                              | п                     | independent variables. Definition of the Hamiltonian (through Legendre's transformation) and its relation<br>to the energy, Hamilton's canonical equations in cylindrical and spherical coordinates as well, Hamilton's<br>principle, Derivation of Hamilton's equations by integral principle i.e. by Hamilton's principle, Derivation<br>of Hamilton's principle by differential principle i. e. by D' Alembert's principle, Derivation of Lagrange's<br>equations from integral principle i.e. Hamilton's principle, Simple applications of Hamilton's equations of<br>motion. Cyclic (ignorable) coordinates and conservation laws. Routhian Mechanics: Definition of |                           |  |  |  |  |
| IV       phase space. Four types of generating functions, Poisson Brackets: their definition and their elementary properties. Equations of motion in Poisson Brackets form, Poisson theorem, Jacobi-Poisson theorem, Lagrange Brackets, Invariance of Poisson and Lagrange Brackets with respect to canonical transformations, Relation between Poisson and Lagrange Brackets.       12         V       Hamilton Jacobi theory: Hamilton Jacobi equation, Jacobi theorem, Method of separation of variables in Hamilton Jacobi equation and its simple applications.       12         Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc       Suggested Readings:         1. Gelfand J.M., Fomin S.V. and Silverman ,R.A.: Calculus of Variations, Prentice Hall,2000       2. Goldstein, H.: Classical Mechanics (3rd Edition), Pearson New International Edition, 2014, ISBN 13: 9780201657029/ ISBN 10: 0201657023         3. Rana, N.C. and Joag, P.S.: Classical Mechanics, Tata McGraw Hill, New Delhi, 1991. ISBN-10: 0074603159/ ISBN-13: 9780074603154         Suggested equivation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.         Suggested equivation of the courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ш                     | variable and its generalization to (i) "n" dependent variables (ii) higher order derivatives, Applications of calculus of variation: Shortest distance between two points on a plane, Minimum surface of                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 12                        |  |  |  |  |
| V       Hamilton Jacobi equation and its simple applications.       12         Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc         Suggested Readings:         1. Gelfand ,I.M., Fomin ,S.V. and Silverman ,R.A.: Calculus of Variations, Prentice Hall,2000         2. Goldstein, H.: Classical Mechanics (3rd Edition), Pearson New International Edition, 2014, ISBN 13: 9780201657029/ ISBN 10: 0201657023         3. Rana, N.C. and Joag, P.S.: Classical Mechanics, Tata McGraw Hill, New Delhi, 1991. ISBN-10: 0074603159/ ISBN-13: 9780074603154         Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.         Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | IV                    | phase space. Four types of generating functions, Poisson Brackets: their definition and their elementary properties. Equations of motion in Poisson Brackets form, Poisson theorem, Jacobi-Poisson theorem, Lagrange Brackets, Invariance of Poisson and Lagrange Brackets with respect to canonical                                                                                                                                                                                                                                                                                                                                                                      | 12                        |  |  |  |  |
| <ul> <li>Suggested Readings: <ol> <li>Gelfand J.M., Fomin ,S.V. and Silverman ,R.A.: Calculus of Variations, Prentice Hall,2000</li> <li>Goldstein, H.: Classical Mechanics (3rd Edition), Pearson New International Edition, 2014, ISBN 13: 9780201657029/ ISBN 10: 0201657023</li> <li>Rana, N.C. and Joag, P.S.: Classical Mechanics, Tata McGraw Hill, New Delhi, 1991. ISBN-10: 0074603159/ ISBN-13: 9780074603154</li> </ol> </li> <li>Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.</li> <li>Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | V                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                        |  |  |  |  |
| <ol> <li>Gelfand ,I.M., Fomin ,S.V. and Silverman ,R.A.: Calculus of Variations, Prentice Hall,2000</li> <li>Goldstein, H.: Classical Mechanics (3rd Edition), Pearson New International Edition, 2014, ISBN 13: 9780201657029/ ISBN 10: 0201657023</li> <li>Rana, N.C. and Joag, P.S.: Classical Mechanics, Tata McGraw Hill, New Delhi, 1991. ISBN-10: 0074603159/ ISBN-13: 9780074603154</li> <li>Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.</li> <li>Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Teachin               | g Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | s/ assignments, etc       |  |  |  |  |
| Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1. Gelfan<br>2. Golds | nd ,I.M., Fomin ,S.V. and Silverman ,R.A.: Calculus of Variations, Prentice Hall,2000<br>tein, H.: Classical Mechanics (3rd Edition), Pearson New International Edition, 2014, ISBN 13: 9780201657029/ IS                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                           |  |  |  |  |
| online libraries, e-PG Pathshaala etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Suggested Con         | tinuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                           |  |  |  |  |
| Further Suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E-contents from different |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Further Suggesti      | ions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                           |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | <b>Core-Elective (Group-I) COURSE-III : Financial Mathematics</b>                                                                                                                             |                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Programme/Cla<br>M.A./M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ass:       | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                             | Semester: Second/Eight                                             |
| Course Code: 082                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20305      | <b>Course Title: Financial Mathematics</b>                                                                                                                                                    | Theory                                                             |
| <ul> <li>Course Objectives: The objectives are to introduce the basic mathematical concepts and techniques used in finance and business. This also highlights the interelationships of the mathematics and problem-solving skills with a particular emphasis on financial and business applications.</li> <li>Course outcomes:</li> <li>CO1: Demonstrate understanding of basic concepts in linear algebra, relating to linear equations, matrices, and optimization.</li> <li>CO2. Demonstrate understanding of concepts relating to functions and annuities.</li> <li>CO3. Employ methods related to these concepts in a variety of financial applications</li> <li>CO4. Apply logical thinking to problem solving in context.</li> <li>CO5. Use appropriate technology to aid problem solving.</li> <li>CO6. Demonstrate skills in writing mathematics</li> </ul> |            |                                                                                                                                                                                               |                                                                    |
| Credits: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Core Elective                                                                                                                                                                                 | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |
| Tea                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aching Hou | rs = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in                                                                                                  | a Semester                                                         |
| Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | Course Topic                                                                                                                                                                                  | No. of Lectures Hours                                              |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | sic Definitions and Terminology, Basic option theory: single and multi-period binomial pricing<br>Cox-Ross-Rubinstein (CCR) model, Black Scholes formula for potion pricing as a limit of CCR | 12                                                                 |
| П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |            | n ad Geometric Brownian Motion, Theory of Martingales, Stochastic Calculus, Stochastic ial Equations.                                                                                         | 12                                                                 |
| III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | nula to solve SDE <sup>**</sup> s, FeymannKac theorem, Application of stochastic calculus in option pricing, holes partial differential equations and Black Scholes formula.                  | 12                                                                 |
| IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Mean Variance portfolio theory: Markowitz model for Portfolio optimization and Capital Asset Pricing<br>Model (CAPM), Interest rates and interest rate derivatives:                           |                                                                    |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Binomia    | l lattice model, Vasicek, Hull and White and Cox Ingersoll Ross (CIR) Model for bond P.                                                                                                       | 12                                                                 |

Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc

### **Suggested Readings:**

- 1. Parikh, J.C., Stochastic Process and Financial Markets, Alpha Science International, 2003.
- 2. Roman,S. An Introduction the Mathematics of Finance, Springer, 1st Edition, 2000
- 3. Ross,S. An Introduction to Mathematical Finance, Cambridge University press,3rd Edition, 2011.

Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.

Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc

Further Suggestions:

|                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                               | Core-Elective (Group-I) COURSE-III : Bio Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                            |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Programme/Class:<br>M.A./M.Sc.                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                               | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Semester: Second/Eight                                                                                                                                     |
| Course Code: 082030                                                                                                                                                                                                                                  | 6                                                                                                                                                                                                                                                                                                                                             | Course Title: Bio Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Theory                                                                                                                                                     |
| with biological problem by<br>CO1: Knowledge in Bios<br>statistical populations, sam<br>CO2. Knowledge in Const<br>and graphical representation<br>CO3. Knowledge in Attributes.<br>CO4. Knowledge in Basic<br>coefficient, Kendall's tau,<br>ratio. | y statistica<br>statistics -<br>nple from<br>truction of<br>on of data<br>bute - def<br>c concept<br>partial ar                                                                                                                                                                                                                               | al problems through the relationship between theoretical, mathematical, and computational aspects. It was methods, prediction and evaluation of outcomes against the biological statistical data. Course outcome basic concepts, examples and applications of statistical methods in medicine, biology and public he population, data collection - sampling methods.<br>f statistical tables, frequency distribution, construction of frequency tables from raw data, cumulative frequency of central tendency, raw and central moments from grouped and ungrouped data, dispersion, similarity of the concepts, dichotomy, fundamental set of frequencies, consistency of data, conditions of construction of multiple correlation and regression, tests for correlation and regression coefficients, intra-class correlations software like SPSS and SAS | s:<br>alth, scale of measurements,<br>equency tables, diagrammatic<br>skewness and kurtosis.<br>nsistency, independence and<br>Spearman's rank correlation |
| Credits: 5                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                               | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max Marks<br>(Int.+Ext.): 25+75 Total = 100<br>Minimum Marks: 40                                                                                           |
| Teachi                                                                                                                                                                                                                                               | ing Hour                                                                                                                                                                                                                                                                                                                                      | s = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a Ser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | nester                                                                                                                                                     |
| Unit                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                               | Course Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No. of Lectures Hours                                                                                                                                      |
| Ι                                                                                                                                                                                                                                                    | Introduction to Biostatistics: Biostatistics - basic concepts, examples and applications of statistical methods<br>in medicine, biology and public health, scale of measurements, statistical populations, sample from 12<br>population, data collection - sampling methods.                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                            |
| п                                                                                                                                                                                                                                                    | Descriptive Statistics: Construction of statistical tables, frequency distribution, construction of frequency tables from raw data, cumulative frequency tables, diagrammatic and graphical representation of data, measures of central tendency, raw and central moments from grouped and ungrouped data, dispersion, skewness and kurtosis. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                                                                                                                                                         |
| ш                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                               | f attributes: Attribute - definition and concepts, dichotomy, fundamental set of frequencies, consistency conditions of consistency, independence and association of attributes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                         |

| IV                                                                                                                                                                                                                                                                                                    | Correlation and regression: Basic concepts, Scatter diagram, line of regression, correlation coefficient, fitting of regression lines, definition of Spearman's rank correlation coefficient, Kendall's tau, partial and multiple correlation and regression, intra-class correlation coefficient, correlation ratio. | 12 |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| V                                                                                                                                                                                                                                                                                                     | Binomial confidence intervals, 2-sample t-tests, Chi-squared test, Discrete probability distributions:<br>Binomial Distribution, Bernoulli's Distribution, Poisson Distribution.Continuous probability distributions:<br>Exponential, Normal and Continuous Uniform Distribution.                                     | 12 |  |  |  |
| Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                       |    |  |  |  |
| <ul> <li>Suggested Readings:</li> <li>1. Medical Statistics - Principles &amp; Methods: Sundaram K. R., Dwivedi S.N. &amp; Sreenivas V.; 2009; BI Publications, New Delhi.</li> <li>2. Statistics, A foundation for analysis in health science: Wayne W Daniel. 7th ed.; 1999; John Wiley.</li> </ul> |                                                                                                                                                                                                                                                                                                                       |    |  |  |  |
| Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                       |    |  |  |  |
| Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc                                                                                                                 |                                                                                                                                                                                                                                                                                                                       |    |  |  |  |
| Further Suggestions:                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                       |    |  |  |  |

| <b>Core-Elective (Group-2) COURSE-IV : Mathematical Statistics</b>                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--|--|--|--|
| Programme/Class: M.A./M.Sc.                                                                                                                                  | Year: P.G. Ist Year or UG in Research Fourth Year         Course Title: Mathematical Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Semester: Second/Eight<br>Theory                                  |  |  |  |  |
| Course Code: 0820307                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   |  |  |  |  |
| studying advanced statistical me<br>Course outcomes:<br>CO1: Explore the basic ideas ab<br>CO2: Explain the different types<br>CO3: Tackle big data and draw | this course is to extend and master students' knowledge of probability and statistical methods and to provide<br>hods, Upon successful completion of this course, students will be able to study, correctly apply and interpret<br>out measures of central tendency, dispersion and their applications in other statistical problems.<br>of discrete and continuous distributions and their utilization.<br>inferences form it by applying appropriate statistical techniques.<br>atistical techniques in various experimental and industrial requirements | -                                                                 |  |  |  |  |
| Credits: 5                                                                                                                                                   | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max Marks<br>(Int. + Ext.): 25+75 Total = 10<br>Minimum Marks: 40 |  |  |  |  |
| Teaching I                                                                                                                                                   | Iours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a Se                                                                                                                                                                                                                                                                                                                                                                                                                                                       | emester                                                           |  |  |  |  |
| Unit                                                                                                                                                         | Course Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | No. of Lectures Hours                                             |  |  |  |  |
| I                                                                                                                                                            | Probability: Set theoretic approach, Sample spaces, Events; Dependent and Independent events, The concept of Probability, Statistical or empirical definition, Conditional probability, Bay's theorem, Probability mass and density functions, Chebyshev's inequality.                                                                                                                                                                                                                                                                                     | 12                                                                |  |  |  |  |
| Π                                                                                                                                                            | Random variables, Distribution functions, Joint probability distribution function, Conditional distribution function, Probability density function, Expectation, Covariance, Variance of variables, standard discrete and continuous univariate distributions, standard errors, marginal and conditional distributions.                                                                                                                                                                                                                                    | 12                                                                |  |  |  |  |
| III                                                                                                                                                          | Basics concept of Moment generating function, Probability generating function and Universal generating function, Discrete distributions: Geometric, Bernoulli, Binomial, Poisson and uniform distributions, Continuous distributions: Normal, Exponential, Gamma, Chi-square, student's t and F, and Beta distributions.                                                                                                                                                                                                                                   | 12                                                                |  |  |  |  |

| IV                                                                                                                                                                                                                                                                                                                                                                                        | Sampling Methods: Random Sampling Methods, Simple Random sampling, Stratified Sampling, Systematic Sampling, Probability Proportional to size sampling, Test of Hypothesis and significance: Statistical Hypothesis (Simple and composite), Null and alternative hypotheses, N-P Lemma, Examples of MP and UMP tests, p-value, Tests for Significance, Testing the significance for population mean and variance for t-distribution and chi-square distribution. | 12                          |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|
| V                                                                                                                                                                                                                                                                                                                                                                                         | Curve Fitting, Correlation and regression: Curve fitting, The Method of Least Squares, fitting of a straight Line and second-degree Parabola, Correlation coefficients, Simple and multiple linear Regression, lines of regression, regression coefficient, Scatter diagram, test for slop and correlation                                                                                                                                                       | 12                          |  |  |
| Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc<br>Suggested Readings:<br>1. Rohatgi, V.K., Saleh, A.K. Md. Ehsanes: An Introduction to Probability and Statistics, Second Edition Wiley-Inderscience. (2008)<br>2. Kennedy and Gentle: Statistics Computing, Published by CRC Press. (2021) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |  |  |
| 4. Mood, A.M. and                                                                                                                                                                                                                                                                                                                                                                         | roductory Probability and Statistical Applications, IBH. 2 <sup>nd</sup> Edition (1970)<br><b>Graybill, F.:</b> Introduction to the Theory of Statistics, McGraw Hill Education; 3 <sup>rd</sup> edition (2017).<br><b>hig, A. and McKean, Joseph W.:</b> Introduction to Mathematical Statistics, Pearson Education, .8 <sup>th</sup> Edition New                                                                                                               | Delhi (2019)                |  |  |
| Suggested Continuous I                                                                                                                                                                                                                                                                                                                                                                    | Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                                             |                             |  |  |
| Suggested equivalent on<br>libraries, e-PG Pathshaala                                                                                                                                                                                                                                                                                                                                     | line courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-con etc                                                                                                                                                                                                                                                                                                                                                         | tents from different online |  |  |
| Further Suggestions:                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                             |  |  |

| Core-Elective (Group-2) COURSE-IV : Linear Algebra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                 |                                                                    |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Programme/Class:<br>M.A./M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                               | Semester: Second/Eight                                             |  |  |  |
| Course Code: 0820308                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Course Title: Linear Algebra                                                                                                                                                                                                                    | Theory                                                             |  |  |  |
| Course Objectives:<br>The main objective of this course is to develop theoretical as well as working knowledge of the central ideas of linear algebra like linear transformations, invertibility & isomorphisms, eigenvalues, eigenvectors, the minimal polynomial, diagonalization, canonical forms, rational & Jordan forms, bilinear forms and their classification.<br>Linear algebra finds applications in coding theory, cryptography, graph theory and linear programming. Thus, after completing this course, students shall bear a good insight to study general plus advanced contents of the above-mentioned courses.<br><b>Course outcomes:</b><br><b>CO1:</b> Understand the notion of a vector space and linear transformation and to determine basis and dimension of a vector space.<br><b>CO2:</b> Understand the concept of linear transformation and to find the range space and null space of the linear transformation<br><b>CO3:</b> Find the eigenvectors and Eigen-value of a square matrix and to know diagonalization of the matrix<br><b>CO4:</b> Compute an orthogonal basis using the Gram-Schmidt process. |                                                                                                                                                                                                                                                 |                                                                    |  |  |  |
| Credits: 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Core Elective                                                                                                                                                                                                                                   | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |  |  |
| Teaching Hou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rs = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a Sec                                                                                                                                              | mester                                                             |  |  |  |
| Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Course Topic                                                                                                                                                                                                                                    | No. of Lectures Hours                                              |  |  |  |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Linear transformations, Isomorphism, Range and null space, The matrix representation of linear transformations, Linear functional, Double dual.                                                                                                 | 12                                                                 |  |  |  |
| II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Invertibility and Isomorphisms, The change of coordinate matrix, The transpose of a linear transformations, Polynomial ideals, Prime factorization of polynomials, Inner product spaces, Bessel's inequality, Normal and unitary operators.     | 12                                                                 |  |  |  |
| III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elementary canonical forms: Annihilating polynomials, The minimal polynomial, Invariant subspaces,Simultaneous triangulation, Simultaneous diagonalization, Direct-sum decomposition, Invariant direct sums, The primary decomposition theorem. | 12                                                                 |  |  |  |
| IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | The Rational and Jordan forms: Cyclic subspaces and annihilators, Cyclic decomposition and the rational form, The Jordan form.                                                                                                                  | 12                                                                 |  |  |  |

| V                                                                                                                                                                                     | Orthogonal and unitary reduction of quadratic and Hermitian form, Positive definite quadratic forms, simultaneous reduction. Bilinear forms, Matrix of a bilinear form, Classification of bilinear forms: Symmetric bilinear forms, Skew-symmetric bilinear forms                                                                                                                                                                                           | 12 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| Teaching Learning Process: Class                                                                                                                                                      | discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, e                                                                                                                                                                                                                                                                                                                                                   | tc |  |  |
| <ol> <li>Hoffman, K., Kunze R.: Li</li> <li>Friedberg, S.H., Insel ,A.:</li> <li>Strang, G. Linear Algebra a</li> </ol>                                                               | <ol> <li>David C.Lay, Steven R.Lay and Judi J.MC Donald; Linear Algebra and Its Applications, 6<sup>th</sup> Edition Pearson Education 2021.</li> <li>Hoffman, K., Kunze R.: Linear Algebra (2<sup>nd</sup> Edition), Pearson, 2017.</li> <li>Friedberg, S.H., Insel ,A.J., Spence, L.E.: Linear Algebra Pearson Education India,2015.</li> <li>Strang, G. Linear Algebra and its Applications (4<sup>th</sup> Edition), Cengage Learning, 2007.</li> </ol> |    |  |  |
| Suggested Continuous Evaluat                                                                                                                                                          | Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                   |    |  |  |
| Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |  |  |
| Further Suggestions:                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                             | <b>Core-Elective (Group-2) COURSE-IV : Data Structure with C</b>                                                                                                                                                                                                                                          |                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Programme/Class:<br>M.A./M.Sc.                                                                                                                                                                                                                                                                                                                                                              | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                                                                         | Semester: Second/Eight                                             |
| Course Code: 0820309                                                                                                                                                                                                                                                                                                                                                                        | Course Title: Data Structure with C                                                                                                                                                                                                                                                                       | Theory                                                             |
| <ol> <li>Programming languages di</li> <li>Studying programming lan<br/>because they will learn to:</li> <li>A programming language 1</li> <li>Programming languages of</li> <li>Course outcomes:</li> <li>CO1. Understanding a functional h</li> <li>CO2. Ability to define and manage</li> <li>CO3. Ability to work with textual i</li> <li>CO4. Students will be able to deve</li> </ol> | data structures based on problem subject domain.                                                                                                                                                                                                                                                          | ·                                                                  |
| Credits: 5                                                                                                                                                                                                                                                                                                                                                                                  | Core Elective                                                                                                                                                                                                                                                                                             | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |
| Teaching He                                                                                                                                                                                                                                                                                                                                                                                 | ours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a S                                                                                                                                                                                                        | Semester                                                           |
| Unit                                                                                                                                                                                                                                                                                                                                                                                        | Course Topic                                                                                                                                                                                                                                                                                              | No. of Lectures Hours                                              |
| I                                                                                                                                                                                                                                                                                                                                                                                           | <b>Introduction to the C Language:</b> Writing a Simple C Program: Learning the format of a C program, declaring variables, designing program flow and control, defining and using functions, data types, using standard terminal I/O functions.                                                          | 12                                                                 |
| II                                                                                                                                                                                                                                                                                                                                                                                          | <b>Conditional Program Execution:</b> Applying if and switch statements, nesting if and else, restrictions on switch values, use of break and default with switch. Program Loops and Iteration: Uses of while, do and for loops, multiple loop variables, assignment operators, using break and continue. | 12                                                                 |

| Ш                                                                                                                                                                                     | Modular Programming, Arrays and Structures<br>Passing arguments by value, scope rules and global variables, separate compilation, and linkage,<br>building your own modules. Array notation and representation, manipulating array elements, using<br>multidimensional arrays, arrays of unknown or varying size.                                                                                                                                                       | 12               |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| IV                                                                                                                                                                                    | <b>Structures:</b> Purpose and usageof structures, declaring structures, assigning of structures. Unions:<br>Components in overlapping memory, declaring and using unionsh vs. private .c files, hiding<br>private variables and functions                                                                                                                                                                                                                              | 12               |  |
| V                                                                                                                                                                                     | <b>Functions and Pointers to Objects:</b> Simple C-functions, passing arguments to functions, returning values from functions, reference arguments, overloaded functions, recursion, inline functions, default arguments, scope and storage class, returning by reference, Constant function arguments, runtime memory management. Pointer and address arithmetic, pointer operations and declarations, using pointers as function arguments, Dynamic memory allocation | 12               |  |
| Teaching Learnin                                                                                                                                                                      | g Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ a                                                                                                                                                                                                                                                                                                                                                           | assignments, etc |  |
| <ol> <li>Balaguruswamy, "Progra</li> <li>Kanetkar, Yashwant "Po</li> </ol>                                                                                                            | ete Reference in C," TMH                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |  |
| Suggested Continuous Evalu                                                                                                                                                            | ation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                                                         |                  |  |
| Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |  |
| Further Suggestions:                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |  |

#### M.A./M.Sc. II **Core-Elective (Group-2) Dynamical System** Programme/Class: M.A./M.Sc. Year: P.G. II Year or UG in Research Fourth Year Semester: Second/Eight **Course Title: Dynamical System Course Code: 0820310** Theory Course Objectives: Dynamical systems describe the time evolution of systems which arise from mathematics, physics, biology, chemistry and other areas. As mathematical objects they are ordinary differential equations, usually nonlinear and therefore not usually able to explicitly solved. The aim of the course is to see how to make a qualitative analysis of a dynamical system using many different analytic tools. Course outcomes: CO1. To introduce students to the basic mathematical skills for the qualitative solving of low dimensional systems of ordinary differential equations in continuous time, including dimensionless forms, phase portraits, and bifurcations. **CO2.** To provide a brief introduction to the way ordinary differential equation can be used to model, explain and interpret real world problems. **CO3.** To provide a brief introduction to the theory and concepts that under pin the field of dynamical systems. Max Marks Credits: 4 **Core Elective** (Int. + Ext.): 25+75 Total = 100 Minimum Marks: 40 Teaching Hours = Lecture-Tutorial-Practical (L-T-P): 4-0-0 (Four Hours in a week) or 60 Lecture Hours in a Semester Unit **Course Topic** No. of Lectures Hours The orbit of a map, fixed point, equilibrium point, periodic point, circular map, configuration space and phase I 12 space. Origin of bifurcation. Stability of a fixed point, equilibrium point. Concept of limit cycle and torus. Π 12 Hyperbolicity. Quadratic map. Feigenbaum's universal constant. Turning point, trans critical, pitch work. Hopf bifurcation. Period doubling phenomena. Nonlinear Oscillators Conservative system. Hamiltonian system. Various Type of oscillators in nonlinear system. 12 III Solutions of nonlinear differential equations. Phenomena of losing stability. Quasiperiodic motion. Topological study of nonlinear differential equations. 12 IV Poincare map. Randomness of orbits of a dynamical system. Chaos. Strange attractors. Various roots to chaos. Onset V 12 mechanism of turbulence.

Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc

- 1. Arnold. V.I, Dynamical Systems, Cambridge University Press, 1993.
- 2. Arrowosmith. D.K., Introduction to Dynamical Systems, Cambridge University Press, 1990.
- 3. Robert L.Davaney. An Introduction to Chaotic Dynamical Systems, Addison-Wesley Publishing Co. 1989.

Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.

Course prerequisites: To study this course, a student must have had the subject Mathematics in UG degree.

Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraires.

Further Suggestions:

### MINOR ELECTIVE PAPER : VEDIC MATHEMATICS (FOR OTHER FACULTY STUDENTS)

|                                                                                          |                                                                                                                                                                               | (FOR OTHER FACULTY STUDENTS)                                                                                                                                                                                                                          |                                                                    |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Programme/Class: M.A./M.Sc.                                                              |                                                                                                                                                                               | Year: P.G. Ist Year or UG in Research Fourth Year                                                                                                                                                                                                     | Semester: First/Seventh                                            |
| Course Code:                                                                             |                                                                                                                                                                               | Course Title: VEDIC MATHEMATICS                                                                                                                                                                                                                       | Theory                                                             |
| To improve the basic mathemati<br>Course Outcomes:<br>CO1. It enables faster calculation | ical skills<br>1 as comp                                                                                                                                                      | course to enhance the problem-solving skills.<br>and to help students who are preparing for competitive exams<br>ared to the usual method.<br>c sutras to enhance their skills for competitive exams and able to solve examinations more efficiently. |                                                                    |
|                                                                                          | nvenient s                                                                                                                                                                    | olution to difficult mathematics problems and calculations.                                                                                                                                                                                           |                                                                    |
| Credits: 4                                                                               | concentra                                                                                                                                                                     | MINOR ELECTIVE                                                                                                                                                                                                                                        | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |
| Teaching I                                                                               | Hours = l                                                                                                                                                                     | Lecture-Tutorial-Practical (L-T-P): 4-0-0 (Four Hours in a week) or 60 Lecture Hours in a Sen                                                                                                                                                         | nester                                                             |
| Unit                                                                                     | Course Topic                                                                                                                                                                  |                                                                                                                                                                                                                                                       | No. of Lectures Hours                                              |
| I                                                                                        | Introduction of Vedic Mathematics, Sankalan, Vyavkalan, Friend and Fast Friend, Complements, Beejank<br>,Deviation Methods.                                                   |                                                                                                                                                                                                                                                       | 15                                                                 |
| II                                                                                       | Vinculum Number, Conversion and its Applications, Formations of Tables , Duplex Method and Its Applications, Square and Square Roots (Perfect), Cube and Cube Roots (Perfect) |                                                                                                                                                                                                                                                       | 15                                                                 |
| III                                                                                      | III Multiplication by Vedic Sutras, Division by Vedic Sutras, Flag Method, Test of Divisibility, Mixed operations.                                                            |                                                                                                                                                                                                                                                       | 15                                                                 |
| IV                                                                                       | Indian Mathematicians (Aryabhatt, Bharti Krishna Trith ji, Nina Gupta, Varahmihir)                                                                                            |                                                                                                                                                                                                                                                       | 15                                                                 |
|                                                                                          |                                                                                                                                                                               | sions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc elective course by the students of following subjects: Arts and Commerce                                                                        |                                                                    |

- 1. Chauthaiwale, Shriram" "Enjoy Vedic Mathematics" Art of Living international Bangluru, India
- 2. Chauthaiwale, Shriram, Verma, Deviprasadand and Deshmukh, Devendra, "Eminent Bharatiya Mathematicians".
- 3. Singh Shivraj, Kumar Anil, Gupta Soniya, Yadav Rashmi "Vedic Ganit", Pragati Prakashan, Meerut, India, 2022, First Edition.
- 4. Vishvkarma, Kailash, "Vaidik Ganit Vihangam Drishti Part 1" Shiksha Sanskriti Uthan Nyas New Delhi.
- 5. Chauthaiwale, Shriram, "Vedic Ganit Praneta Shankaracharya Pujay shri Bharti Krishan Trithji" Shiksha Sanskriti Uthan Nyas New Delhi.
- 6. Upadhyay B.L. "Prachin Bharatiya Ganit" Vigyan Bharti, New Delhi, India.
- 7. Mohan Braj "History of Mathematics" Hindi Samiti Information Department U.P.,India.
- 8. Handa Nidhi "Ancient Hindu Mathematics an Introduction" Oshina Publications, Indore (MP), India, 2018, First Edition.
- 9. "Vedic Ganit Nirdeshika" Vidya Bharti Sanskriti Shiksha Sansthan, Haryana, India, 2017, Seventh Edition.
- 10. Arya, Vedveer, "Indian Contributions to Mathematics and Astronomy" Aryabhata Publications.

Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.

Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala, <u>www.vedicganita.org</u> by Dr. S.K.Kapoor, **vedic-ganit-certificate-course-in-hansraj college** 

Further Suggestions:

# Detailed Syllabus

For

# M.A. /M.Sc. II (MATHEMATICS)

### Or

## MASTER DEGREE in MATHEMATICS

Curriculum & Syllabus Post Graduation and Fourth, Fifth- & Sixth-year course Under NEP2020, Mathematics

### M.A./M.Sc. II Core-Elective (Group-1) FLUID DYNAMICS

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Core-Elective (Group-1) FLOID DINAMICS                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                  |                    |                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------|
| Programme/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Class: M.A/ M.Sc.                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                          | Year: U.G. Research Fifth Year of P.G. II Year                                                                                                                                                                                                                                                                                                                                                                   |                    | Semester: Third/Ninth                                                          |
| Course (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Code: 0920301                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                          | Course Title: FLUID DYNAMICS                                                                                                                                                                                                                                                                                                                                                                                     |                    | Theory                                                                         |
| with other science<br>develop the abili<br>CO1. To know, y<br>CO2. To describ<br>CO3. To convert<br>CO4. To frame a<br>CO5. To describ<br>CO6. To underst<br>CO7. To apply F<br>CO8. To underst<br>CO9. To make d<br>CO10. To link fl<br>CO11. To apply<br>CO12. To define                                                                                                                                                                                                                                                                                       | ty to demonstrate and for<br>understand and apply the<br>the physical properties<br>to the physical laws of conser-<br>and describe the flow the<br>term of ideal and<br>tand stress-strain relation<br>Bernoulli equations in the<br>tand the singularities of<br>limensional analysis and<br>low behavior with non-<br>det the similitude concept a<br>e, describe and apply the | gineering. The mat<br>ormulate physical p<br>e basic concepts of<br>s of a fluid.<br>rvation of mass, m<br>rough potential fur<br>d real fluids with o<br>nship in Newtonian<br>eir domain of valio<br>the flow field.<br>I use it to derive the<br>limensional param-<br>und set up the relation<br>basic flow equation | omentum, moment of momentum and energy into mathematical equations and apply them<br>action and stream function.<br>lifferent techniques including complex variable technique.<br>n fluids.<br>dity for fluid flow rate measurement.<br>e dimensionless numbers.                                                                                                                                                 | to desc:           | cs of fluid at rest and in motion to<br>ul solutions<br>ribe the fluid motion. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Credits: 5Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minim Marks: 40                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                  |                    | t. + Ext.): 25+75 Total = 100                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          | Total No. of Lectures-Tutorial (05 hours per week): L-T: 5-1                                                                                                                                                                                                                                                                                                                                                     |                    |                                                                                |
| Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          | Topics                                                                                                                                                                                                                                                                                                                                                                                                           |                    | No. of Lectures Total 60                                                       |
| Introduction: fluid characteristics, continuum concept and basic properties of fluids, Newtonian law of viscosity,<br>Kinematics of fluids: Eulerian vs. Lagrangian descriptions of fluid motion, Equivalence of Lagrangian and Eulerian<br>methods, General motion of a fluid element: Translation (Acceleration of a fluid particle in a velocity field), Rotation<br>(angular deformation) and Deformation (volumetric or extensional strain/ shear strain), Flow lines: Stream lines, Path<br>lines, Streak lines, Boundary conditions and boundary surface. |                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                          | 12                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                                                                                |
| п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | coordinate system<br>Principal values of<br>approach: Mass con                                                                                                                                                                                                                                                                                                                     | to another coor<br>stress tensor, Conservation equation                                                                                                                                                                                                                                                                  | luid: Normal stress, Shearing stress, Transformation of stress components from dinate system, Symmetry of stress tensor, Plane stresses, Principal directions is onstitutive equation for Newtonian fluid, Conservation laws by the Control Volu on in rectangular cartesian, cylindrical and spherical coordinate systems, Equivales derived by Lagrangian method and Eulerian method, Equation of conservation | and<br>ime<br>ince | 12                                                                             |

|                                                    | momentum (NavierStokes Equation and Euler Equation), Equation of conservation of moment of momentum, Equation of conservation of energy, Simple and direct applications of conservation equations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |    |
|----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| Ш                                                  | Vorticity and circulation, Elementary properties of vortex motion, Stream function for two-dimensional incompressible<br>Flow, Stream function and potential flow theory, Theorems about rotational and irrotational flows of inviscid and<br>incompressible flows – Stokes' theorem, Kelvin's minimum energy theorem, Gauss theorem, Kelvin's circulation<br>theorem, Uniqueness of irrotational flows. Bernoulli's equation for incompressible and inviscid flows: Integration of<br>Euler's equation along a streamline for steady and unsteady flows, Applications of Bernoulli's equation for irrotational<br>flows: Flow through an orifice, Motion of a jet through atmosphere, Pitot tube, Venturi meter.                                            | 12 |
| IV                                                 | Two-dimensional irrotational incompressible flows (Complex variable technique and its applications): Flow over a corner, Flow over a circular cylinder, Flow over a moving circular cylinder, Flow over a moving circular cylinder, with circulation, Blasius theorem, Milne's circle theorem, Flow field singularities: Sources, Sinks and Doublets in two dimensions, Images of a source/ sink/ doublet with respect to a line and with respect to a circle, Simple applications of source, sink and doublet.                                                                                                                                                                                                                                              | 12 |
| V                                                  | Dimensional analysis, Buckingham Pi theorem, Dimensionless numbers (Reynold number, Pressure coefficient, Mach number, Froude number, Prandtl number) and their properties Basic introduction to Newtonian and non-Newtonian rheologies. Exact solutions for Navier-Stokes equations: Flow between two parallel rigid porous and non-porous plates - Plane couette flow, Pressure driven (Poiseuille) flow, Generalized plane couette flow, Flow of two immiscible fluids between two rigid non-porous parallel plates, Pressure driven (Hagen-Poiseuille) flow through a tube of uniform circular cross section , Flow through an annulus (created by two concentric circular cylinders) under constant pressure gradient, Flow through a rotating annulus. | 12 |
| <b>Feaching Lea</b> r                              | rning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |    |
| 2. Charlton, F<br>3. Raisinghani<br>4. Rathy, R.K. | <ul> <li>adings:</li> <li>G.K. An Introduction of Fluid Mechanics, Oxford University Books, NewDelhi, 2000.</li> <li>Text Book of Fluid Dynamics, CBS Publishers, Delhi, 2004.</li> <li>ia, M.D.: Fluid Dynamics: with Complete Hydrodynamics and Boundary Layer Theory, S. Chand Publishing, 2014, ISBN 13: 9788121908696.</li> <li>An Introduction of Fluid Dynamics, Oxford and IBH Publishing Co.,New Delhi, 1903.</li> <li>Foundations of Fluid Mechanics, Prentice Hall of India Private Limited,New-Delhi, 1988., ISBN10: 0133298132/ ISBN-13: 978-0133298130.</li> </ul>                                                                                                                                                                             |    |
| Suggested Co                                       | ntinuous Evaluation Methods: Continuous internal evaluation through internal tests quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |    |
|                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |    |
| Course prerec                                      | quisites: To study this course, a student must have had the subject Mathematics in UG Level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |    |

|                                                                                                                                                                                                                                                                           | COURSE-II : Linear Integral Equation<br>Core-Elective (Group-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|
| Programme/Class:<br>M.A./M.Sc.Year: U.G. Research Fifth Year of P.G. II YearSem                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                       |  |  |
| Course Code: 0920302                                                                                                                                                                                                                                                      | Course Title: Linear Integral Equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Theory                |  |  |
| <ul> <li>2. Integral equations at 3. Many fundamental 4. In biology and ecor</li> <li>Course outcomes:</li> <li>CO1. The use of the difference</li> <li>CO2. The use of the difference</li> <li>CO3. The use of this theor</li> <li>CO4. This theory can solve</li> </ul> | the basic ideas of Integral Equations combined with some real-life problems<br>revery important in the mathematical modeling of physical systems.<br>laws of physics and chemistry can be formulated as Integral equations.<br>nomics, Integral equations are used to model the behavior of complex systems.<br>ntial equation theory is to solve various types of Mathematical modeling problems.<br>ential equation theory is to solve many problems presented in different sciences such as Biology, Chemical science<br>y is to solve many real-life based problems such as population problem, control problems and networking secu<br>e many engineering problems such as the exact trajectory path of a rocket or a missile.<br>to formulate and solve differential equations arising from changes in physical world. | •                     |  |  |
| Credits: 5                                                                                                                                                                                                                                                                | Credits: 5Core ElectiveMax Marks<br>(Int. + Ext.): 25+75 Tota<br>Minimum Marks: 40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                       |  |  |
| Teacl                                                                                                                                                                                                                                                                     | hing Hours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a Se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | emester               |  |  |
| Unit                                                                                                                                                                                                                                                                      | Course Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | No. of Lectures Hours |  |  |
| Ι                                                                                                                                                                                                                                                                         | Classification of Integral Equation, transformation of ordinary differential equation into Integral Equation,<br>Boundary value problem, transforming initial value problem into Volterra Integral Equation, conversion of<br>boundary value problem into Fredholm integral equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                    |  |  |
| Ш                                                                                                                                                                                                                                                                         | Different kind of Fredholm integral equation, orthogonality & orthonormality of eigen functions, degenerate kernel, symmetric kernel, fundamental properties of eigen values & eigen functions, Hilbert Schmidt Theorem, Schmidt's Solution of Non-homogeneous Fredholm Integral Equation of the Second Kind, resolvent kernel or reciprocal kernel, solution by successive substitution & successive approximation, Neumann Series, Iterated Kernel.                                                                                                                                                                                                                                                                                                                                                                        | 12                    |  |  |

| III                                                                                                                                                                                   | Solution of Volterra Integral Equation, Solution by successive substitution & Successive approximation,<br>Neumann series, Classical Fredholm Theory, Fredholm's First, Second and Third Fundamental Theorem,<br>Theorem, Resolvent Kernel, Resolvent kernel by using Fredholm's first theorem,                                                                                                                                                                                                                                                                                                   | 12 |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| IV                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |  |  |
| V                                                                                                                                                                                     | Application of Laplace Transform to find solution of Volterra Integral Equation, Resolvent Kernel of Volterra Integral Equation, Fourier Transform, solution of Singular Integral Equation .                                                                                                                                                                                                                                                                                                                                                                                                      | 12 |  |  |  |
| Suggested Reading<br>1. Kanwal,R. P., Line<br>2. Gupta, A.S., Calcu<br>3. Hildebrand, F. B.,                                                                                          | <ul> <li>Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc</li> <li>Suggested Readings:         <ol> <li>Kanwal, R. P., Linear Integral Equation, Theory and Technique, 2<sup>nd</sup> edition, 1996, Academic Press New York 1971.</li> <li>Gupta, A.S., Calculus of Variations with Applications, Ist edition, PHI, India.</li> <li>Hildebrand, F. B., Method of Applied Mathematics, 2<sup>nd</sup> edition, PHI, India</li> </ol> </li> <li>Sharma D.C., Integral Equations, PHI, India</li> </ul> |    |  |  |  |
| Suggested Continue                                                                                                                                                                    | Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |    |  |  |  |
| Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |  |  |
| Further Suggestions:                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |    |  |  |  |

|                                                                                                                                                                                                                                                                                                                      |                                                                    | COURSE-III : Information Theory<br>Core-Elective (Group-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|
| Programme/Class: M.A./N                                                                                                                                                                                                                                                                                              | A.Sc.                                                              | Year: U.G. Research Fifth Year of P.G. II Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Semester: Third/Ninth                                              |
| Course Code: 0920303                                                                                                                                                                                                                                                                                                 | 3                                                                  | Course Title: Information Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Theory                                                             |
| for different blocks of inf<br>course, the students will be<br><b>Course outcomes:</b><br><b>CO1.</b> Apply linear block of<br><b>CO2.</b> Decide an efficient of<br><b>CO3.</b> Compute entropy an                                                                                                                  | Formation,<br>e able to u<br>codes for e<br>data comp<br>nd mutual | eory is concerned with the analysis of an entity called a communication system, It deals with the com-<br>, It is oriented towards the fundamental limitations on the processing and communication of informa-<br>inderstand fundamentals of communication system.<br>error detection and correction and design the channel performance using Information theory.<br>pression scheme for a given information source.<br>information of random variables.<br>f information theoretical principles and Bayesian inference in data modeling and pattern recognition. |                                                                    |
| Credits: 5                                                                                                                                                                                                                                                                                                           |                                                                    | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |
| Teach                                                                                                                                                                                                                                                                                                                | ning Hou                                                           | rs = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Semester                                                           |
| Unit                                                                                                                                                                                                                                                                                                                 |                                                                    | Course Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | No. of Lectures Hours                                              |
| I Measure of Information: Convexity, monotonicity and continuity properties. Extermination, saddle point, capacity as information radius, Entropy, Mutual information, The Shannon entropy and its properties, Entropy and Shannon's First Theorem, Join and condition entropies, Transformation and its properties. |                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |
|                                                                                                                                                                                                                                                                                                                      |                                                                    | ess Coding: Ingredients and noiseless coding problem, uniquely decipherable codes, Necessary and<br>ent condition for the existence of instantaneous codes, Construction of optimal codes.                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                 |
| IIIDiscrete Memory less Channel: The Channel and Mutual Information, Classification of channels, Channel<br>Capacity, Calculation of Channel capacity, Decoding Schemes, The ideal observer, The Fundamental<br>Theorem of Information Theory and its strong and weak converses.                                     |                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |
| IVContinuous Channels: The time – discrete Gaussian channel, Uncertainty of absolutely continuous random<br>variable, The converse to the coding theorem for time – discrete Gaussian channel, The time – continuous<br>Gaussian channel, Band – limit channels,                                                     |                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                    |

| V                                                                                                                                                                                                                                                                                                                                                 | Some intuitive properties, Maximality, Stability, Additivity, Subadditivity, Nonnegativity, Continuity, Branching etc. and interconnection among them, Axiomatic characterization of the Shannon entropy due to Shannon and Fadeev. | 12 |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|
| Teaching Learning Process                                                                                                                                                                                                                                                                                                                         | Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.                                                                                                                                   |    |  |  |
| <ul> <li>Suggested Readings:</li> <li>1. Aczel, J. M.and Daroczy: Z. On Measures of Information and their Characterizations, Academic Press, New York, 1975.</li> <li>2. Ash, R.: Information Theory, Inderscience, New York, 1995.</li> <li>3. Reza, F.M.: An Introduction to Information Theory, McGraw Hill Book Company Inc, 1961.</li> </ul> |                                                                                                                                                                                                                                     |    |  |  |
| Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                         |                                                                                                                                                                                                                                     |    |  |  |
| Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs, and NPTEL. E-contents from different online libraires.                                                                                                                                                                                |                                                                                                                                                                                                                                     |    |  |  |
| Further Suggestions:                                                                                                                                                                                                                                                                                                                              | Further Suggestions:                                                                                                                                                                                                                |    |  |  |

|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                        | M.A./M.Sc. II<br>Core-Elective (Group-1) Advanced Topology                                                                                                                                                                     |                  |                                                                   |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-------------------------------------------------------------------|--|--|
| Programm                                                                                                                                                                                                                               | e/Class: M.A/M.Sc.                                                                                                                                                                                                                                                                     | Year: U.G. Research Fifth Year of P.G. II Year                                                                                                                                                                                 | Sem              | ester: Third/Ninth                                                |  |  |
| Course                                                                                                                                                                                                                                 | Course Code: 0920304     Course Title: Advanced Topology     Theory                                                                                                                                                                                                                    |                                                                                                                                                                                                                                |                  |                                                                   |  |  |
| designed to develo<br>At the end of the co<br>theory and analysi<br><b>Course outcomes:</b><br><b>C01:</b> Define topolo<br><b>CO2:</b> Explain how<br><b>CO3:</b> Explain how<br><b>CO4:</b> Reconstruct<br><b>CO5:</b> The beauty of | ern branch of geometry. It serv<br>p an understanding of topologi<br>ourse, students should be able t<br>s.<br>bgy on a non-empty set, open, of<br>to generate a topology from a<br>a metric generate a topology,<br>homeomorphism functions bet<br>of the subject is to gain proficie |                                                                                                                                                                                                                                | or the main appl | ications in geometry, number                                      |  |  |
|                                                                                                                                                                                                                                        | Credits: 5                                                                                                                                                                                                                                                                             | Core Elective                                                                                                                                                                                                                  | ()               | Max Marks<br>Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |  |
|                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                        | Total No. of Lectures- Tutorials (05 hours per week): L-T: 5-1                                                                                                                                                                 | i                |                                                                   |  |  |
| Unit                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                        | Topics                                                                                                                                                                                                                         |                  | No. of Lectures Total 60                                          |  |  |
| Ι                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                        | F1, T2, T3, T3(1/2), T4, their characterizations and basic properties.Urysohn's len, Statement of Urysohn's Metrization Theorem.                                                                                               | emma and         | 12                                                                |  |  |
| Π                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                        | Compactness – Continuous functions and compact sets, Basic properties of compactness, Compactness and finite intersection property, Sequentially and countably compact sets, Local compactness and one point compactification. |                  |                                                                   |  |  |
| III                                                                                                                                                                                                                                    | Countability axioms – Fin<br>countability and Separabi                                                                                                                                                                                                                                 | rst and second countable spaces, Lindelof's Theorems, Separablespaces, Second lity.                                                                                                                                            | l                | 12                                                                |  |  |

| IV                                                                                                                                                             | The Tychonoff's Product Theorem and Stone-cech Compactification Theorem.                                                                                                                                                                                                                                                                                                                                  | 12 |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| V                                                                                                                                                              | Metrization Theorems and Paracompactness: Local Finiteness, The Nagata- Smirnov Metrization Theorem, Paracompactness, The Smirnov Metrization Theorem.                                                                                                                                                                                                                                                    | 12 |  |  |  |
| Teaching Learning I                                                                                                                                            | Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.                                                                                                                                                                                                                                                                                                |    |  |  |  |
| 1.         Dugundji, J.           2.         Joshi ,K D, H           3.         Munkres ,J.           4.         Pervin ,W. J           5.         Simmons, G. | <ol> <li>Joshi ,K D, Introduction to General Topology, New Age International Publisher, 2014.</li> <li>Munkres ,J. R.: Topology, A First Course, PHI Pvt. Ltd., N. Delhi, 2018.</li> <li>Pervin ,W. J.: Foundations of General Topology, Academic Press Inc., New York, 1964</li> <li>Simmons, G. F.: Introduction to Topology and Modern Analysis, Tata McGraw-HillEducation Pvt. Ltd., 2016.</li> </ol> |    |  |  |  |
|                                                                                                                                                                | Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.<br>Course prerequisites: To study this course, a student must have had the subject Mathematics in UG degree.                                                                                                                                                                    |    |  |  |  |
| Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, and NPTEL. E-contents from different online libraires     |                                                                                                                                                                                                                                                                                                                                                                                                           |    |  |  |  |
| Further Suggestions:                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                           |    |  |  |  |

|                                                                                                                                                                                                                                                  | COURSE-III : Mathematical Programming<br>Core-Elective (Group-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                    |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|--|
| Programme/Class: M.A./M.Sc.       Year: U.G. Research Fifth Year of P.G. II Year       Semester: Third/Ninth                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                    |  |  |  |  |  |  |
| Course Code: 0920305                                                                                                                                                                                                                             | Course Title: Mathematical Programming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Theory                                                             |  |  |  |  |  |  |
| this course students will be able<br><u>Course outcomes:</u><br>CO1: The use of Mathematical H<br>CO2: The understanding of math<br>CO3: The formulation and solving<br>CO4. To solve problems involving<br>CO5. To have deep insight in solving | y and applications of Mathematical Programming. It extends the theory of optimization methods to more<br>Programming algorithms for problem solving but also the design of their variants for special problem cases<br>mematical structure and properties of fundamental problem classes (e.g., linear, non-linear and integer program<br>of problems arising from practical, real-life settings.<br>ng optimization models with integer constraints.<br>Nolving optimization problems which are non-linear.<br>ingle objective" and "multiple objective" functions. |                                                                    |  |  |  |  |  |  |
| Credits: 5                                                                                                                                                                                                                                       | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |  |  |  |  |  |
| Teaching                                                                                                                                                                                                                                         | Hours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Semester                                                           |  |  |  |  |  |  |
| Unit                                                                                                                                                                                                                                             | Course Topic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | No. of Lectures Hours                                              |  |  |  |  |  |  |
| Ι                                                                                                                                                                                                                                                | Convex functions, pseudo-convex functions, quasi-convex, explicit quasi-convex, quasi-monotonic functions and their properties from the point of view of mathematical programming.                                                                                                                                                                                                                                                                                                                                                                                   | 12                                                                 |  |  |  |  |  |  |
| П                                                                                                                                                                                                                                                | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                    |  |  |  |  |  |  |
| III                                                                                                                                                                                                                                              | Lagrangian saddle points, Duality in nonlinear programming, Strong duality in convex-programming, Duality for linear and quadratic programming.                                                                                                                                                                                                                                                                                                                                                                                                                      | 12                                                                 |  |  |  |  |  |  |

| IV                                                                                                                        | IV       Quadratic programming: (i) Wolfe's algorithm (ii) Beale's algorithm (iii) Theil and Vande Pannealgorithm.                    |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| V                                                                                                                         | VDuality theory of quadratic and convex programming, separable programming, sequential<br>unconstrained minimization.12               |  |  |  |  |  |  |
| Teaching Learning Process: Clas                                                                                           | s discussions/ demonstrations, Power point presentations, using e-content, Class activities/ assignments, etc                         |  |  |  |  |  |  |
| Suggested Readings:                                                                                                       |                                                                                                                                       |  |  |  |  |  |  |
|                                                                                                                           | ming (5 <sup>th</sup> Edition), Narosa Publishing House, 2002                                                                         |  |  |  |  |  |  |
|                                                                                                                           | Dynamic Programming (4 <sup>th</sup> edition), Addison-Wesley, Reading Mass, 1974.                                                    |  |  |  |  |  |  |
|                                                                                                                           | l Programming Techniques, Affiliated East-West Press.2016.                                                                            |  |  |  |  |  |  |
| 4. Mangasarian, O.L.: Non-li                                                                                              | inear Programming (2 <sup>nd</sup> Edition), McGraw Hill, New York,2006.                                                              |  |  |  |  |  |  |
| 5. Taha: H.A. Operations Res                                                                                              | earch An Introduction (10 <sup>th</sup> Edition), PearsonPublication, 2019.                                                           |  |  |  |  |  |  |
| Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation. |                                                                                                                                       |  |  |  |  |  |  |
| Suggested equivalent online co                                                                                            | Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from |  |  |  |  |  |  |
| different online libraries, e-PG P                                                                                        | Pathshaala etc                                                                                                                        |  |  |  |  |  |  |
| Further Suggestions:                                                                                                      |                                                                                                                                       |  |  |  |  |  |  |

|                                                                                                                     | COURSE-III: Difference Equations<br>Core-Elective (Group-1)                                                                                                                                                                                                                                                                                                                                            |                                                                    |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|
| Programme/Class: M.A./M.Sc.       Year: P.G. II Year       Semester: Third/Ninth                                    |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                    |  |  |  |  |  |
| Course Code: 0920306                                                                                                | Course Title: Difference Equations                                                                                                                                                                                                                                                                                                                                                                     | Theory                                                             |  |  |  |  |  |
| Course outcomes: After co<br>CO1: Understand the occurr<br>CO2: Understand the non-li<br>CO3: Understand the System | is to introduce the difference equations, solutions, Fundamental theorems for existence and uniqueness of mpleting this course, student is expected to learn the following: ing of difference equations and linear difference equations. Also will be able to solve these equations near difference equations and their linearization m of difference equations. Multiple equations and their systems. | difference equations.                                              |  |  |  |  |  |
| Credits: 5                                                                                                          | Core Elective                                                                                                                                                                                                                                                                                                                                                                                          | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |  |  |  |  |
| Teachi                                                                                                              | ng Hours = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours i                                                                                                                                                                                                                                                                                                      | n a Semester                                                       |  |  |  |  |  |
| Unit                                                                                                                | Course Topic                                                                                                                                                                                                                                                                                                                                                                                           | No. of Lectures Hours                                              |  |  |  |  |  |
| I                                                                                                                   | Introduction, difference calculus, difference operators, Greens function, approximate summations,<br>Linear difference equations of first order, existence and uniqueness of solutions, linear difference<br>equations with constant coefficients,                                                                                                                                                     | 12                                                                 |  |  |  |  |  |
| Ш                                                                                                                   | Equations with variables coefficients, Non-linear equation that can be linearized, The z-transform,<br>Properties of z-transform, Initial and final value theorem, General solution of<br>Second order homogeneous difference equation, Matrix method for solving lineardifference equations.                                                                                                          | 12                                                                 |  |  |  |  |  |
| Ш                                                                                                                   | Systems of linear difference equations, qualitative behavior of solutions to lineardifference equations, Generating function, Properties of generating function, Exponential Generating function, Recurrence relation.                                                                                                                                                                                 | 12                                                                 |  |  |  |  |  |
| IV                                                                                                                  | Nonlinear difference equations (Map): Steady states and their stability, the logistic difference equation, systems of nonlinear difference equations, stability criteria for secondorder equations,                                                                                                                                                                                                    | 12                                                                 |  |  |  |  |  |
| V                                                                                                                   | Nonlinear difference equations: Stability criteria for higher order system, Critical points, Lagrange's identity, Green's formula, Abel's formula.                                                                                                                                                                                                                                                     | 12                                                                 |  |  |  |  |  |

- 1. Walter G. Kelly and Allen C. Peterson, Difference Equations: An Introduction with Applications, Academic Press, Harcourt Brace Joranovich Publishers, 1991.
- 2. Calvin Ahlbrandt and Allen C. Peterson, Discrete Hamiltonian System, Difference Equations, Continued fraction and Riccati equations, Kluwer, Bostan, 1996.

### **Suggested Continuous Evaluation Methods:**

Continuous internal evaluation through internal tests, quizzes and Presentation.

### Suggested equivalent online courses:

There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-contents from different online libraries, e-PG Pathshaala etc.

Further Suggestions:

|                                                                                                                                                                                                                                                                                                                                   |                                                                                                            | COURSE-III: Measure and Integration Theory<br>Core-Elective (Group-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                            |                                                                                            |                                                                                           |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|--|--|
| Programme/Class:<br>M.A./M.Sc.Year: P.G. II YearSemester: 7                                                                                                                                                                                                                                                                       |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                            |                                                                                           |  |  |  |
| Course Code:                                                                                                                                                                                                                                                                                                                      | )920307                                                                                                    | Course Title: Measure and Integration Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                            | The                                                                                        | eory                                                                                      |  |  |  |
| ts role in the theo<br>gives stronger (and<br>pure and applied m<br>Course outcomes:<br>CO1. Extend their<br>CO2. Utilize the co<br>CO3. Apply the kr<br>heir applications.                                                                                                                                                       | ry of integration.<br>I better) results as<br>athematics, for ex<br>knowledge of Lel<br>oncepts of derivat | f the course is to give an introduction to Lebesgue measure on the set of real numb<br>The later objective is to show how the concept of Lebesgue measure is used in<br>compared to the theory of Riemann integration. The theory of measure and integration<br>ample in the theory of (partial) differential equations, functional analysis and fract<br>besgue theory of integration by selecting and applying its tools for further research<br>ive, MVTS for vector-valued functions in applications different fields for example<br>of functions of several variables and measure theory in order to study theoretic<br>integration. | developing the the<br>gration has numera<br>al geometry.<br>in this and other re<br>management, indu<br>cal development of | eory of (Lebes)<br>ous application<br>elated areas.<br>1stry and econo<br>f different math | gue) integration which<br>as in other branches of<br>punics etc.<br>nematical concepts ar |  |  |  |
| Credits: 5 Core Elective (Int. + Ext.):                                                                                                                                                                                                                                                                                           |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                            | ax Marks<br>: 25+75 Total = 100<br>um Marks: 40                                           |  |  |  |
| Feaching Hours =                                                                                                                                                                                                                                                                                                                  | Lecture-Tutoria                                                                                            | ll-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours in a S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | emester                                                                                                                    |                                                                                            |                                                                                           |  |  |  |
| Unit                                                                                                                                                                                                                                                                                                                              |                                                                                                            | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                            |                                                                                            | No. of Lectures<br>Total 60                                                               |  |  |  |
| Ι                                                                                                                                                                                                                                                                                                                                 |                                                                                                            | nfinite Sets, Countable and uncountable sets, Cardinality of Sets, Arithmetic on<br>ntor set and its properties, Cantor function and its properties, Continuum hypothesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                            | ers, Cantor's                                                                              | 12                                                                                        |  |  |  |
| II Lebesgue outer measure and its properties, and sets, Lebesgue measure, Measurable sets and their properties, Algebra of sets, -Algebra of sets, Measure of open and closed sets, Borel sets and their measurability, Regularity, Non-measurable sets.                                                                          |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                            | 12                                                                                        |  |  |  |
| Measurable functions and their properties, Algebra of measurable functions, Step function, Characteristic function, SimpleIIIfunction, Sets of Measure zero, Convergence almost everywhere, Borel measurable function, Littlewood's three principles,<br>Convergence in measure, Egoroff's theorem, Lusin theorem, Riesz theorem. |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            | ·                                                                                          | 12                                                                                        |  |  |  |
| IVThe Lebesgue Integral: Riemann and Lebesgue integral, Lebesgue integral of a bounded function over a set of finite<br>measure, Properties of Lebesgue integral for bounded measurable functions, Convergence Theorems, Fatou's Lemma,<br>Integral of non-negative measurable functions, The general Lebesgue integral.          |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                            |                                                                                           |  |  |  |
| V         Functions of bounded variation, Variation function, Jordan-Decomposition theorem, Differentiation of monotone functions, Vitali covering lemma, Lebesgue Differentiation Theorem, Differentiation of an integral, Absolute continuity. Lp-spaces.                                                                       |                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                            |                                                                                            |                                                                                           |  |  |  |
| v                                                                                                                                                                                                                                                                                                                                 | vitali cover                                                                                               | ng lenina, Leoesgue Differentiation Theorem, Differentiation of an integral, Abso                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | full continuity. Lp                                                                                                        | -spaces.                                                                                   |                                                                                           |  |  |  |

Suggested Readings: 1. Barra, G de: Measure Theory and Integration, 2 nd Edition, New Age International (P) Ltd., 2011.
2. Goldberg, Richard R: Real analysis, Oxford and IBH, 2012.
3. Jain, P.K. & Gupta, V.P.: Lebesgue Measure and Integration, New Age International (P)Ltd., New Delhi.
4. Rana, Inder K., An Introduction to Measure and Integration, Narosa Publishing House, 2007.
5. Royden, H.L.: Real analysis, 4th Edition, Pearson, 2018.
6. Rudin, Walter, Real & Complex Analysis, McGraw Hill Education, 3rd Edition, 2017.
Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.
Course prerequisites: To study this course, a student must have had the subject Mathematics in UG degree.

Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs, and NPTEL. E-contents from different online libraires.

FurtherSuggestions:

|                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                       | M.A./M.Sc. II                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          |                                                                                                                                                             |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|                                                                                                                                                                                                                                                                                             | Lebesgue N                                                                                                                                                                                                                                            | Aeasure and Integration Theory Core-Elect                                                                                                                                                                                                                                                                                                                                                                                                                                    | tive (Group-2)                                                                                                                           |                                                                                                                                                             |  |
| Programme/Cl                                                                                                                                                                                                                                                                                | lass: M.A./M.Sc.                                                                                                                                                                                                                                      | Year: UG Research Fifth Year or P.G. II Year                                                                                                                                                                                                                                                                                                                                                                                                                                 | Sem                                                                                                                                      | ester: Third/Ninth                                                                                                                                          |  |
| Course Co                                                                                                                                                                                                                                                                                   | de: 0920308                                                                                                                                                                                                                                           | Course Title: Number Theory                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                          | Theory                                                                                                                                                      |  |
| rigorous and tricky proofs<br>Fermat's Theorem, Wilson<br>system of linear congruent<br>and theorems are applicab<br><b>Course outcomes:</b><br><b>CO1</b> .Identify the challeng<br><b>CO2.</b> Formulate and prove<br>Mathematical Induction an<br><b>CO3.</b> Apply the knowledg         | of many important results than's theorem, Lagrange theorem<br>ces, quadratic congruences, et<br>le in cryptography.<br>ing problems in modern mathe<br>e conjectures about numeric p<br>ad/or the Well Ordering Princ<br>ge of Number theory and Cryp | st all basic concepts of number theory and to demonstrate a<br>at have been used by them from quiet long time. The studen<br>m, Quadratic reciprocity, etc. It will supply methods to solv<br>tc. Students will be able to detect the primality of a large in<br>mematics and find their appropriate solutions.<br>batterns, and produce rigorous arguments centered on the metipal in the proof of theorems.<br>ptography to attain a good mathematical maturity and enable | hts will learn the use of<br>ve linear Diophantine en<br>teger. It will show how<br>naterial of number theor<br>les to build mathematica | Chinese remainder theorem,<br>quations, linear congruences,<br>various number theoretic concepts<br>y, most notably in the use of<br>al thinking and skill. |  |
| CO4. Design, analyse and                                                                                                                                                                                                                                                                    | implement the concepts of D                                                                                                                                                                                                                           | Diophantine equations for solving different types of problem                                                                                                                                                                                                                                                                                                                                                                                                                 | ns, for example, sum of                                                                                                                  | two and four squares<br>Max Marks                                                                                                                           |  |
| Credits: 5                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                       | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                          |                                                                                                                                                             |  |
|                                                                                                                                                                                                                                                                                             | Τ                                                                                                                                                                                                                                                     | otal No. of Lectures-Tutorial (05 hours per week): L-                                                                                                                                                                                                                                                                                                                                                                                                                        | Г: 5-1.                                                                                                                                  |                                                                                                                                                             |  |
| Unit                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                       | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                          | No. of Lectures Total 60                                                                                                                                    |  |
| Ι                                                                                                                                                                                                                                                                                           | the LCM, the extended<br>arithmetic, The Sieve of<br>Statement of Prime Nu                                                                                                                                                                            | The division algorithm, Definition and theory of the GCD, Euclid's Lemma, Definition and theory of the LCM, the extended Euclidean algorithm, Distribution of primes, the fundamental theorem of arithmetic, The Sieve of Eratosthenes, The Goldbach conjecture, Consequences of Dirichlet theorem, Statement of Prime Number theorem, Solutions of word problems using the theory of linear Diophantine equation, Solution of simultaneous system of linear congruences.    |                                                                                                                                          |                                                                                                                                                             |  |
| <b>II</b> Number Theoretic Functions: The number $(\tau)$ , sum $(\sigma)$ , and product of the divisors, Multiplicative function, Mobius function, Morten's Lemma, The Mobius inversion formula and its applications, The greatest integer function, Legendre formula and its application. |                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                          | 12                                                                                                                                                          |  |
| Ш                                                                                                                                                                                                                                                                                           | The order of an integer m<br>primes, Finding all primi<br>indices, Properties of indu-                                                                                                                                                                | The order of an integer modulo n and order of higher powers of the integer modulo n, Primitive roots for primes, Finding all primitive roots of a prime, Composite numbers having primitive roots, The theory of indices, Properties of index, Solutions of non-linear congruences, Euler's criterion, Solutions of quadratic congruences with prime moduli                                                                                                                  |                                                                                                                                          |                                                                                                                                                             |  |
| IV                                                                                                                                                                                                                                                                                          | Pseudoprimes and absol<br>sequence and its propert                                                                                                                                                                                                    | lute pseudoprimes, Perfect numbers, even perfect num<br>ies, Continued fractions: representation of rational numb<br>ion of linear Diophantine equation by means of simple cont                                                                                                                                                                                                                                                                                              | er as a finite simple                                                                                                                    | 12                                                                                                                                                          |  |

Curriculum & Syllabus Post Graduation and Fourth, Fifth- & Sixth-year course Under NEP2020, Mathematics

| V                                                                                                                                                                  | Application to cryptography: Cryptology, Cryptography, Cryptanalysis, Symmetric Key Cryptography,<br>Public Key Cryptography, Pohlig-Hellman cryptosystem, RSA cryptosystem, Knapsack cryptosystem,<br>ElGamal cryptosystem | 12 |  |  |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Teaching Learning Proce                                                                                                                                            | Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.                                                                                                |    |  |  |  |  |  |  |
| Suggested Readings:                                                                                                                                                |                                                                                                                                                                                                                             |    |  |  |  |  |  |  |
| 1. Burton, David M.: Ele                                                                                                                                           | nentary Number Theory (7th Edition), McGraw Hill Education, 2017.                                                                                                                                                           |    |  |  |  |  |  |  |
| 2. Dudley U.: Elementary                                                                                                                                           | <b>Number Theory</b> (2nd edition) Dover Publications, 2008.                                                                                                                                                                |    |  |  |  |  |  |  |
| 3. E. George. Andrews: N                                                                                                                                           | umber Theory, Dover Publications, 1994.                                                                                                                                                                                     |    |  |  |  |  |  |  |
| Suggested Continuous Ev                                                                                                                                            | valuation Methods:                                                                                                                                                                                                          |    |  |  |  |  |  |  |
| Continuous internal evalua                                                                                                                                         | tion through internal tests, quizzes and Presentation.                                                                                                                                                                      |    |  |  |  |  |  |  |
| Course prerequisites: To                                                                                                                                           | study this course, a student must have had the subject Mathematics in UG degree                                                                                                                                             |    |  |  |  |  |  |  |
| Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs, and NPTEL. E-contents from different online libraires. |                                                                                                                                                                                                                             |    |  |  |  |  |  |  |
| FurtherSuggestions:                                                                                                                                                |                                                                                                                                                                                                                             |    |  |  |  |  |  |  |
| L                                                                                                                                                                  |                                                                                                                                                                                                                             |    |  |  |  |  |  |  |

|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                | M.A./M.Sc. II Advance Numerical Analysi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | is                                                                                                        |                                                                                                                                                                      |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                | <b>Core-Elective (Group-2)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           |                                                                                                                                                                      |  |  |  |
| Programme/Clas                                                                                                                                                                                                                                                                                              | Programme/Class: M.A./M.Sc.Year: UG Research Fifth Year or P.G. II YearSemester: Third/Ninth                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                                                                      |  |  |  |
| Course Code                                                                                                                                                                                                                                                                                                 | e: 0920309                                                                                                                                                                                                                     | Course Title: Applied Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           | Theory                                                                                                                                                               |  |  |  |
| unavailable or inappropriat<br>to apply the techniques and<br><b>Course outcomes:</b><br><b>CO1.</b> Apply their knowledg<br>problems viz. nonlinear equ<br><b>CO2.</b> Find the solution of lit<br><b>CO3.</b> Demonstrate understa<br><b>CO4:</b> Identify the challengin<br>efficiently using computer c | te. Successful students will<br>I methods to specific proble<br>ge of computer programmin<br>ations, a system of linear econ<br>near and nonlinear equation<br>nding of common numerican<br>ng problems in continuous<br>odes. | ues for finding approximate numerical solutions to mathem<br>have an appreciation of the difficulties involved in finding r<br>mssuch as finding roots of equations, quadrature and numer<br>ag to develop and implement their own computer codes of<br>quations, interpolation and extrapolation, initial and boundar<br>as and solution of differential equations.<br>Il methods and how they are used to obtain approximate.<br>mathematics (which are difficult to deal with analytically) a<br>equations in numerical analysis | reliable solutions and w<br>rical solution of differe<br>numerical methods for<br>ry value problems of or | vill gain practical knowledge of how<br>ntial equations.<br>solving different types of complex<br>rdinary differential equations, etc.<br>e solutions accurately and |  |  |  |
| Credits: 5                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40                                                                                                   |  |  |  |
|                                                                                                                                                                                                                                                                                                             | Т                                                                                                                                                                                                                              | otal No. of Lectures-Tutorial (05 hours per week): L-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ſ: <b>5-1</b> .                                                                                           |                                                                                                                                                                      |  |  |  |
| Unit                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           | No. of Lectures<br>Total 60                                                                                                                                          |  |  |  |
| I                                                                                                                                                                                                                                                                                                           | 12                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                           |                                                                                                                                                                      |  |  |  |
| п                                                                                                                                                                                                                                                                                                           | Modified Newton-Raphs<br>Graffe's root squaring<br>Triangularization Method                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                                                                                                                                      |  |  |  |
| ш                                                                                                                                                                                                                                                                                                           | Householder's method, Q approximation using                                                                                                                                                                                    | and Eigen vectors: Power methods, Jacobi's method<br>-R method; Approximation: Least square polynomial appro<br>orthogonal polynomials, Legendre's approximation,<br>Exponential functions, Rational functions. Approxima-<br>inciple.                                                                                                                                                                                                                                                                                              | ximation, polynomial Approximation with                                                                   | 12                                                                                                                                                                   |  |  |  |

| IV                                                      | IVNumerical Solutions of initial value problems, Picard's method, Taylor's method, Single and multistep<br>methods, Euler's and modified Euler's method, Runge-Kutta second order method and statement of<br>fourth order Runge Kutta methods, Milne's method, Adams-Bash forth method.                        |                           |  |  |  |  |
|---------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|
| V                                                       | Spline approximation, construction of cubic spline, application to differential equation by spline method, introduction to difference equation and method of solution to find $y^{H}$ and $y^{P}$ .                                                                                                            | 12                        |  |  |  |  |
| Teaching Learning Proce                                 | ss: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.                                                                                                                                                                                                          |                           |  |  |  |  |
| 2. Gupta, Radhey S.: Eler<br>3. Jain, M.K., Iyengar, S. | tion to Numerical Analysis, Addison-Wesley Pub. Co., 2016.<br>nents of Numerical Analysis, Macmillan India Ltd. New Delhi, 2015.<br><b>R.K and Jain, R.K.:</b> Numerical Methods for Scientific and Engineering Computations, New Age International<br>ry Methods of Numerical Analysis, UBS Publishers, 2012. | (P) Ltd. New Delhi, 2014. |  |  |  |  |
| Suggested Continuous Ex<br>Continuous internal evalua   | raluation Methods:<br>tion through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                   |                           |  |  |  |  |
| Course prerequisites: To                                | study this course, a student must have had the subject Mathematics in UG degree.                                                                                                                                                                                                                               |                           |  |  |  |  |
| Suggested equivalent on online libraires.               | line courses: There are online courses on the channels such as Swayam Prabha, Moocs, and NPTEL. E-content                                                                                                                                                                                                      | s from different          |  |  |  |  |
| FurtherSuggestions:                                     |                                                                                                                                                                                                                                                                                                                |                           |  |  |  |  |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | M.A./M.Sc. II Applied Statistics<br>Core-Elective (Group-2)                                                                                                                                                                                                                                                                                                     |           |                          |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------|--|
| Programme/Class:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            | Semester: Third/Ninth                                                                                                                                                                                                                                                                                                                                           |           |                          |  |
| Course Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0920310                    | Course Title: Applied Statistics                                                                                                                                                                                                                                                                                                                                |           | Theory                   |  |
| Course Objectives: The aim of this course is to extend and master students in application of statistical methods and to provide theoretical backgrous statistical methods. Upon successful completion of this course, students will be correctly applying and interpret different applications statistical methods. Upon successful completion of this course, students will be correctly applying and interpret different applications statistical methods. Upon successful completion of this course, students will be correctly applying and interpret different applications statistical methods. Col: Learn about various procedures of sampling and concept of sampling distribution that will help in statistical inference         CO2: Tackle big data and draw inferences form it by applying appropriate statistical techniques.         CO3: Will apply ANOVA used to test equality of three or more population means.         CO4: Gain knowledge about time series forecasting techniques.         CO5: Explain the purpose of index numbers and their applications         CO6: Learn how control charts are constructed and how they are used to monitor quality standards.         CO7: Gain knowledge about computer fundamentals and learn about different statistical software's.         Credits: 5       Core Elective |                            |                                                                                                                                                                                                                                                                                                                                                                 |           |                          |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            | Total No. of Lectures-Tutorial (05 hours per week): L-T: 5-1.                                                                                                                                                                                                                                                                                                   |           |                          |  |
| Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                            | Topics                                                                                                                                                                                                                                                                                                                                                          |           | No. of Lectures Total 60 |  |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | sampling,                  | techniques: What is Population, types of Population, sample and parameter, basic princ<br>sampling distribution, types of sampling methods, their Notations and terminology, theore<br>methods, numerical problems, advantages and disadvantages of different sampling methods.                                                                                 |           | 12                       |  |
| п                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | control cha<br>time series | quality control: Introduction to statistical quality control, advantages of Statistical quality contr<br>arts and types of control charts, numerical problems, comparison of different control charts Ana<br>s: Meaning and definition, components of time series, different Mathematical models in time se<br>problems and importance of time series analysis. | alysis of | 12                       |  |
| Index number: Definition and classification of index number, construction of various index number and<br>advantages of index number, numerical problems on index numbers.Computer Awareness: Different types of<br>number system, computer basics and basics of statistical software's SPSS and its advantages.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                                                                                                                                                                                                                                                                                                                 |           | 12                       |  |
| IV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                         |                                                                                                                                                                                                                                                                                                                                                                 |           |                          |  |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12                         |                                                                                                                                                                                                                                                                                                                                                                 |           |                          |  |

1. Rohatgi, V.K., Saleh, A.K. Md. Ehsanes: An Introduction to Probability and Statistics, Second Edition Wiley-Inderscience. (2008)

2. Kennedy and Gentle: Statistics Computing, Published by CRC Press. (2021)

**3. Mayer, P.L.**: Introductory Probability and Statistical Applications, IBH. 2nd Edition (1970)

4. Mood, A.M. and Graybill, F.: Introduction to the Theory of Statistics, McGraw Hill Education; 3rd edition (2017).

5. Hogg, R.V., Craig, A. and McKean, Joseph W.: Introduction to Mathematical Statistics, Pearson Education, .8th Edition New Delhi (2019)

6.Gupta,S.C and Kapoor V.K :Fundamentals of Applied statistics ,Sultan Chand and sons New Delhi (2007)

7.Mukhopadhyay, P: Applied Statistics, Books and Allied Ltd. New Delhi.

Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.

**Course prerequisites:** To study this course, a student must have had the subject Mathematics in UG degree.

Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs, and NPTEL. E-contents from different online libraires.

FurtherSuggestions:

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Course Title: Theory of Relativity<br>Core-Elective (Group-2)              |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                            |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|------------------------------------------------------------|--|--|--|
| Course Code:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Course Code: 0920311Year: UG Research Fifth Year or PG II YearSet          |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             |                                                            |  |  |  |
| Course outcomes:<br>CO1: Knowledge i<br>CO2. Knowledge in<br>CO3. Knowledge in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Relativity - bas<br>n classical theory<br>n Special Relativi             | ic concepts, of relativity, ity in classica                     | liar with Relativity problem in real world.<br>examples and applications<br>Lorentz transformations, Relativistic Mechanics.<br>al Mechanics, Tensor Calculus.<br>ity, relativistic field equations, Schwarzschild solution, Cosmology, Electrodyna                                                                                                                                                                                                                                 |                                             |                                                            |  |  |  |
| C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Credits: 5                                                                 |                                                                 | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                             | Max Marks<br>Ext.): 25+75 Total = 100<br>Ainimum Marks: 40 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |                                                                 | Total No. of Lectures-Tutorials (05hours per week): L-T-P: 5-1                                                                                                                                                                                                                                                                                                                                                                                                                      |                                             |                                                            |  |  |  |
| Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                                                                 | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                             | No. of Lectures Total 60                                   |  |  |  |
| IClassical theory of relativity: Speed of light: inertial frame (Galilean Frame), Galilean Transformation,<br>Electrodynamics, Fizeau's experiment, Michelson and Morley experiment.<br>Lorentz transformations: The new concept of space and time, postulates of special theory of relativity, Lorentz<br>Transformation equation, Lorentz and Fitzgerald contraction, time dilation or apparent retardation of rest,<br>Simultaneity, relativistic formulae for composition of velocities and accelerations, proper time, Lorentz<br>Transformation form a group, problem related to time dilation, Lorentz contraction, composition of velocities,<br>Lorentz invariance; Aberration (Relativistic treatment) Doppler's Effect, confirmation of doppler's affects and<br>related problems. |                                                                            |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                             | 12                                                         |  |  |  |
| Relativistic mechanics: Mass and Momentum, Newton's Law of Motion, measurement of different units,<br>experimental verification of $m_o/(1-v_2/c_2)^{1/2}$ , equivalence of mass and energy, transformation formula for mass,<br>transformation formula for Momentum and energy, transformation formula for force, relativistic transformation<br>formula for density, Minkowski space, geometrical interpretation of Lorentz Transformation, space and time like<br>interval, world points and world line, light cone, proper time, energy Momentum four vector, relativistick equation<br>of motion, Minkowski's equation of motion, solved problem related to $E=mc^2$ , solved problem related to binding<br>energy.                                                                      |                                                                            |                                                                 | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                             |                                                            |  |  |  |
| III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Special Rela<br>suffix, Real<br>Tensor, Sym<br>of tensors, C<br>Fundamenta | suffix, Kror<br>metric tenso<br>Contraction, (<br>l tensor, Mag | sical mechanics, Tensor calculus : <b>Part 1:</b> Line element: Submission conventionecker delta, Determinant, Four vectors (world vectors), Transformation of corr, Anti-symmetric tensor, Addition of tensors, Inner product of two vectors, Mu Quotient law of tensors, Reciprocal symmetric tensor, Relative tensor, Riemann gnitude of a vector, Associate tensor, Angle between two vectors.<br>e. Covariant differentiation, Christoffel symbols, Geodesic, Differential equ | o-ordinates,<br>ltiplication<br>ian metric, | 12                                                         |  |  |  |

Curriculum & Syllabus Post Graduation and Fourth, Fifth- & Sixth-year course Under NEP2020, Mathematics

|                    | geodesic, Tensor law of transformation for Christoffel symbols, Covariant differentiation of tensor, Gradient of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
|                    | scalar, Curl of a vector, Divergence of a vector, Parallel displacement of a vector, Geodesic co-ordinates, Natural coordinates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|                    | Part 3: Curvature Tensor: Riemannian Christoffel's tensor, Properties of covariant curvature tensor, Contraction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
|                    | $R^a_{ijk}$ , Bianchi Identity, Number of independent components $R_{hijk}$ , Uniform vector field, Flat space time.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
| IV                 | General theory of relativity: Introduction of general theory, Principle of covariance, Principle of equivalence.<br>Relativistic Field Equations: Energy Momentum tensor, Field equation, Poisson's equation as an approximation of<br>field equations, Derivation of field equations from Lagrangian density, Equality of inertial and gravitational mass.<br>Schwarzschild Solution: Einstein's law of gravitation in empty space, Schwarzschild exterior solution. Birkhoff's<br>theorem, Relation between M and m, Isotropic co-ordinates, Planetary orbits, Advance of perihelion, Gravitational<br>shift of spectral lines, Schwarzschild's interior solution, Cosmology: Cosmological models, Einstein and De- Sitter<br>line elements, Properties Einstein universe, Properties of De-Sitter universe, Comparison of Einstein model with<br>actual universe, Comparison of De-Sitter model with actual universe. | 12                |
| V                  | Electrodynamics: Gauge Transformation, Transformation equations for differential operators, Transformation equation for E and H, Maxwell's equation are invariant, Equation of continuity, Lorentz condition, Electromagnetic energy Momentum tensor, Law of gravitational in electromagnetic field, Energy and momentum of the electromagnetic field, Electromagnetic stress, Gravitational field due to an electron at rest, Equation for a charged particle, Lagrangian for a charged particle, Crompton effect. Non-static cosmological model: Co- moving co-ordinates systems, Derivation of the R-W line element.                                                                                                                                                                                                                                                                                                  | 12                |
| Teaching Learnin   | g Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   |
|                    | <b>gs:</b><br>ivity: Dr. J.K. Goyal and Dr. K.P. Gupta; Krishna Prakashan Media (P) Ltd., Meerut, Delhi.<br>f SPECIAL and GENERAL RELATIVITY: <u>D.' Krori, I K</u> . PHI LEARNING PVT. LTD.; Revised Edition (1 January 2010).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |
| Suggested Continu  | uous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |
| Course prerequisi  | tes: To study this course, a student must have had the subject Mathematics in UG degree.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                   |
| Suggested equival  | ent online courses: There are online courses on the channels such as Swayam Prabha, and NPTEL. E-contents from different of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | online libraires. |
| Further suggestion | ns:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |

|                                                                      |                                                                                                                                                                                                                                                          |                                                                                                            | M.A./M.Sc. II Wavelet Analysis<br>Core-Elective (Group-2)                                                         |                     |            |                                                                    |  |
|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------|------------|--------------------------------------------------------------------|--|
|                                                                      | Programme/Class: M.A/                                                                                                                                                                                                                                    | M.Sc.                                                                                                      | <b>Year:</b> PG. 2 <sup>nd</sup> Year                                                                             |                     | Semest     | er: Third/Ninth                                                    |  |
|                                                                      | Course Code: 09203                                                                                                                                                                                                                                       | 312                                                                                                        | Course Title: Wavelet Analysis                                                                                    |                     |            | Theory                                                             |  |
| orthonormal<br>Course out<br>CO1: Under<br>CO2: Use th<br>CO3: Learn | I bases byapplying operators<br>comes:<br>rstand the approximation of<br>he applications of frames in                                                                                                                                                    | s on a single wavelet fur<br>functions (signals) by<br>stable analysis and dec<br>lets in the construction | frame theory<br>ompositions of functions<br>n of orthonormal bases bywavelets                                     | of functions (signa | lls) and t | he construction of variety of                                      |  |
|                                                                      |                                                                                                                                                                                                                                                          |                                                                                                            |                                                                                                                   |                     |            | Max Marks<br>(Int. + Ext.): 25 + 75 Total=100<br>Minimum Marks: 40 |  |
|                                                                      |                                                                                                                                                                                                                                                          | Total                                                                                                      | No. of Lectures-Tutorial (05 hours per week): L-T                                                                 | : 5-1               |            |                                                                    |  |
| Unit                                                                 | Unit Topics                                                                                                                                                                                                                                              |                                                                                                            |                                                                                                                   |                     |            | No. of Lectures Total 60                                           |  |
| Ι                                                                    | Review of inner product s                                                                                                                                                                                                                                | paces, orthonormal sys                                                                                     | stems, frames in Cn, frames algorithms                                                                            |                     |            | 12                                                                 |  |
| II                                                                   | Framesand Bessel sequences in infinite dimensional Hilbert spaces, frame sequence, the Gram matrix associated with Bessel sequences.                                                                                                                     |                                                                                                            |                                                                                                                   |                     | ssel       | 12                                                                 |  |
| III                                                                  | III Frames and operators, characterization of frames, dual frames, tight frames. Riesz bases, frames versus Riesz bases, conditions for a frame being a Riesz basis, frames containing a Riesz basis, perturbation of frames.                            |                                                                                                            |                                                                                                                   |                     |            | 12                                                                 |  |
| IV                                                                   | W Wavelets, Haar wavelets, basic properties of the Haar scaling function, Haar decomposition and reconstruction algorithms, the Daubechies wavelets, wavelet bases, scaling function. multire solution analysis (MRA), construction of wavelets from MRA |                                                                                                            |                                                                                                                   |                     | 12         |                                                                    |  |
| V                                                                    |                                                                                                                                                                                                                                                          |                                                                                                            | s Fourier transform (CFT), continuous wavelettransform<br>nsform as an operator, inversion formula for continuous |                     |            | 12                                                                 |  |

Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.

#### **Suggested Readings:**

- 1. Boggess, A. and Narcowich, F.J. A First Course in Wavelets and Fourier Analysis. John Wiley & amp; Sons, 2010.
- 2. Mallat, S. A Wavelet Tour of Signal Processing. Academic Press, 2009.
- 3. Han, D., Kornelson, K., Larson, D. and Weber, E. Frames for Undergraduates, Student Math. Lib., (AMS) Vol. 40, 2007.
- 4. Christensen, O. An Introduction to Frames and Riesz Bases. Birkhauser, 2003.2
- 5. Harnendez, E. and Weiss, G. A First Course on Wavelets, CRC Press, 1996.

Course prerequisites: To study this course, a student must have had the subject Mathematics in UG degree.

Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, and NPTEL. E-contents from different online libraires

Further suggestions:

| M.A./M.Sc. II Fuzzy Sets and Its Applications<br>Core-Elective (Group-1)                                                                                                |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|--|
| Programme/Class: M.A./M.Sc.                                                                                                                                             |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  | Year: UG Fifth year of PG II Year                                                                                                                                                                                                                                                                                                                                                                                                                          | Semester: Fourth/Tents                                             |  |  |  |  |  |
| Course Code: 1020301                                                                                                                                                    |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  | Course Title: Fuzzy Sets and Its Applications                                                                                                                                                                                                                                                                                                                                                                                                              | Theory                                                             |  |  |  |  |  |
| information-bas<br>artificial intellig<br><b>Course outcon</b><br><b>CO1</b> . This theo<br><b>CO2</b> . This theo<br><b>CO3</b> . This theo<br><b>CO4</b> . On the bas | sed modern industry and<br>gence is used.<br><b>nes:</b><br>ry helps to solve those p<br>ry provides an excellent<br>ry can be used to make r<br>asis of this theory many r | market. After of<br>roblems which a<br>tool to handle th<br>nodern systems<br>real-life based p                                                                                                                                                                                                  | th some state-of-the-art fuzzy-logic technology to prepare them in a better we<br>completing this course, the students will be able to get employment if the electron<br>are described in linguistic terms.<br>The vagueness in modern science and technology problems such as computer science<br>based on Artificial Intelligence (A.I) and soft computing.<br>Toblems can be solved such as robotics, management etc.<br>nformation in decision making. | nics equipment's where computational                               |  |  |  |  |  |
| Credits: 5                                                                                                                                                              |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                              | Max Marks<br>(Int. + Ext.): 25 + 75 Total=100<br>Minimum Marks: 40 |  |  |  |  |  |
|                                                                                                                                                                         |                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                  | Total No. of Lectures-Tutorial (05 hours per week): L-T: 5-1                                                                                                                                                                                                                                                                                                                                                                                               |                                                                    |  |  |  |  |  |
| Unit                                                                                                                                                                    |                                                                                                                                                                             | Topics                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |  |  |  |  |  |
| I                                                                                                                                                                       |                                                                                                                                                                             | Introduction: Basics concepts on crisp sets, Fuzzy sets, $\alpha$ -cuts, Additional properties of $\alpha$ -cuts, Level sets, Cardinality of Fuzzy Sets, Types of fuzzy sets, L-Fuzzy Sets, Convex fuzzy sets, Decomposition Theorems, Extension principle for fuzzy sets.                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |  |  |  |  |  |
| Ш                                                                                                                                                                       | operations, General                                                                                                                                                         | Operations of Fuzzy Sets: Fuzzy complement, Fuzzy union. Fuzzy intersection, T-norms, T-conorms, combination of operations, General aggregation Operations. Fuzzy numbers: Concept of Fuzzy Number, Types of Fuzzy Numbers (Triangular and Trapezoidal), Arithmetic operations on Fuzzy Numbers. |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |  |  |  |  |  |
| ш                                                                                                                                                                       |                                                                                                                                                                             | Fuzzy Relations: Fuzzy relations, Projections and Cylindric extensions, Binary fuzzy relations, binary relations on single set, Fuzzy equivalence relations, Fuzzy partial order relations, Fuzzy ordering relations. Fuzzy ranking method.                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |  |  |  |  |  |
| IV                                                                                                                                                                      | Fuzzy logic and Pe<br>conditional fuzzy pr<br>of axioms, propertie<br>properties of plausi<br>between belief meas                                                           | 12                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                    |  |  |  |  |  |

| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fuzzy Controller and Fuzzy Inference System: Fuzzification, Defuzzification (Center of area (COA), Center of maxima (COM), Min of max method (MOM), Center of sums, Weighed average method) Fuzzy rules, Fuzzy controller, Fuzzy inference systems (Mamdani, Sugeno's and Tsukamoto), Fuzzy linear programming. | 12 |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|--|
| Teaching Lear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments etc.                                                                                                                                                                                     |    |  |  |  |  |  |  |
| <ul> <li>Suggested Readings: <ol> <li>Dubosis Didler and Prade, Henri, Fuzzy Sets and systems Theory and Applications,</li> <li>Academice Press, NewYork, 1980</li> <li>Klir . Georage. J and Yuan Bo, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall of India, New Delhi. 2009</li> <li>Lee, Kwang H., First Course on Fuzzy Theory and Applications, Springer International Edition, 2009.</li> <li>Ross, Timothy J., Fuzzy Logic with Engineering Applications, McGraw Hills inc., 2004 New Delhi</li> <li>Roger, Jyh-Shing; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence,<br/><u>MATLAB curriculum series</u>, illustrated, reprint, Prentice Hall, 1997</li> <li>Zimmermann,H.J. Fuzzy Set Theory &amp; its Applications, Allied Publishers Ltd. New Delhi, 2006.</li> </ol> </li> </ul> |                                                                                                                                                                                                                                                                                                                 |    |  |  |  |  |  |  |
| Suggested Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.                                                                                                                                                                                       |    |  |  |  |  |  |  |
| Course preree                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Course prerequisites: To study this course, a student must have had the subject Mathematics in UG degree.                                                                                                                                                                                                       |    |  |  |  |  |  |  |
| Suggested equivalent online courses:<br>There are online courses on the channels such as Swayam Prabha, and NPTEL, Moocs. E-contents from different online libraires.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                 |    |  |  |  |  |  |  |
| Further suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                 |    |  |  |  |  |  |  |

|                                                             |                                                                       | М.                                                                                       | A./M.Sc. II An Introduction to Functional Analysis<br>Core-Elective (Group-1)                                                                                                                            |                      |                                                                   |  |
|-------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-------------------------------------------------------------------|--|
| Programme/Class: M.A/M.Sc.<br>Course Code: 1020302          |                                                                       | Year: UG Fifth year of PG II YearSenCourse Title: An Introduction to Functional Analysis |                                                                                                                                                                                                          | mester: Fourth/Tenth |                                                                   |  |
|                                                             |                                                                       |                                                                                          |                                                                                                                                                                                                          | Theory               |                                                                   |  |
| <b>CO1:</b> Understand the bas <b>CO2:</b> Determine fundam | sics of Functional Ai<br>ental groups of some<br>of some beautiful re | nalysis.<br>e standard<br>esults such                                                    | ntroduce students to Functional Analysis. Course outcomes:<br>spaces like Euclidean spaces and Normed Linear space.<br>as fundamental theorem of Algebra and Hahn Banach , Riesz Fisher theor<br>spaces. | em.                  |                                                                   |  |
| Credits: 5                                                  |                                                                       |                                                                                          | Core Elective (In                                                                                                                                                                                        |                      | Max Marks<br>Int. + Ext.): 25 + 75 Total=100<br>Minimum Marks: 40 |  |
|                                                             |                                                                       |                                                                                          | Total No. of Lectures-Tutorial (05 hours per week): L-                                                                                                                                                   | -T: 5-1              | _                                                                 |  |
| Unit                                                        | Topics                                                                |                                                                                          |                                                                                                                                                                                                          |                      | No. of Lectures Total 60                                          |  |
| I                                                           | Normed Spaces, I<br>Orthonormalizatio                                 | 12                                                                                       |                                                                                                                                                                                                          |                      |                                                                   |  |
| II                                                          | Dual spaces, Oper<br>Uniform bounded                                  | 12                                                                                       |                                                                                                                                                                                                          |                      |                                                                   |  |
| Ш                                                           | Inner product space<br>Perseval's identity                            | 12                                                                                       |                                                                                                                                                                                                          |                      |                                                                   |  |
| IV                                                          | Structure of Hilbe                                                    | Structure of Hilbert spaces, Projection theorem, Riesz representation theorem,           |                                                                                                                                                                                                          |                      |                                                                   |  |
| V                                                           | Adjoint of an ope                                                     | 12                                                                                       |                                                                                                                                                                                                          |                      |                                                                   |  |
|                                                             | Teaching Learning                                                     | g Process:                                                                               | Class discussions/ demonstrations, Power point presentations, Class activi                                                                                                                               | ties/ assignm        | ents, etc.                                                        |  |

**Suggested Readings:** 

- 1. Jain, P.K. and Ahuja, O.P.: Functional Analysis, New Age (International P, Ltd,) NewDelhi, 2010.
- 2. Kreyszig, E.: Introductory Functional Analysis with Applications, John Wiley and Sons, New York, 2007.
- 3. Simmons, G.F.: Introduction to Topology and Modern Analysis, McGraw Hill BookCo., New York, 2013.
- 4. Taylor, A.E. Introduction to Functional Analysis, John Wiley and Sons, New York, 2013.
- 5. Berbarian, S.K.: Introduction to Hilbert Spaces, Oxford University Press, New York, 1961

**Suggested Continuous Evaluation Methods:** Continuous internal evaluation through internal tests quizzes and Presentation. **Course prerequisites:** To study this course, a student must have had the subject Mathematics in UG degree.

Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, Moocs, and NPTEL. E-contents from different online libraires.

Further Suggestions:-....

|                                                                                                                                                                                                                                                                                                                                                                                                                                                      | COURSE: An Introduction to R-Programming<br>Core-Elective (Group-1)                                                                                                                                                                                                                        |                                                                    |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|--|
| Programme/Class: M.A./M.Sc.                                                                                                                                                                                                                                                                                                                                                                                                                          | Year: P.G. II Year or UG in Research fifth Year                                                                                                                                                                                                                                            | Semester: Fouth/Tenth                                              |  |  |  |  |
| Course Code: 1020303                                                                                                                                                                                                                                                                                                                                                                                                                                 | Course Title: An Introduction to R-Programming                                                                                                                                                                                                                                             | Theory                                                             |  |  |  |  |
| <ol> <li>Programming languages dif</li> <li>Studying programming languages dif</li> <li>Studying programming language because they will learn to: C</li> <li>A programming language le</li> <li>Programming languages oft</li> <li>Course outcomes:</li> <li>CO1. Understanding a functional hi</li> <li>CO2. Ability to define and manage</li> <li>CO3. Ability to work with textual in</li> <li>CO4. Students will be able to developed</li> </ol> | data structures based on problem subject domain.                                                                                                                                                                                                                                           | ·                                                                  |  |  |  |  |
| Credits: 5                                                                                                                                                                                                                                                                                                                                                                                                                                           | Core Elective                                                                                                                                                                                                                                                                              | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |  |  |  |
| Teaching Ho                                                                                                                                                                                                                                                                                                                                                                                                                                          | urs = Lecture-Tutorial-Practical (L-T-P): 4-1-0 (Five Hours in a week) or 75 Lecture Hours                                                                                                                                                                                                 | s in a Semester                                                    |  |  |  |  |
| Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Course Topic                                                                                                                                                                                                                                                                               | No. of Lectures Hours                                              |  |  |  |  |
| Ι                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 12                                                                                                                                                                                                                                                                                         |                                                                    |  |  |  |  |
| п                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Use of R as a Calculator, functions and matrix operations, missing data and logical operator, truth table and conditional execution, Conditional Executions and loops, data management with sequence. Data management with repeats, sorting, ordering and lists, vector indexing, factors, | 12                                                                 |  |  |  |  |
| Curricu                                                                                                                                                                                                                                                                                                                                                                                                                                              | lum & Syllabus Post Graduation and Fourth, Fifth- & Sixth-year course Under NEP2020, N                                                                                                                                                                                                     | Nathematics 74                                                     |  |  |  |  |

| Ш                                                      | Data management with strings, print nad format functions, print and format with concatenate, paste function, splitting, replacements and evaluation of strings, display and formatting, importing CSV and Tabulator Data Files, Importing Data files from other softwares. | 14                              |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| IV                                                     | Data management with display paste, split, find and replacement, manipulations with alphabet,<br>Data frames, import of external data in various file formats, statistical functions, compilation,<br>frequency and partition values                                       | 12                              |
| V                                                      | Graphics and plots: Boxplots, statistical functions for central tendency, variation, skewness and Kutosis Bivariate three dimensional plot, correlation and examples of programming.                                                                                       | 12                              |
| 2. Sharad Mehta, "Stati                                |                                                                                                                                                                                                                                                                            |                                 |
| Suggested equivalent onlin                             | aluation Methods: Continuous internal evaluation through internal tests, quizzes and Presentation.<br>The courses: There are online courses on the channels such as Swayam Prabha, Moocs and NPTEL. E-                                                                     | -contents from different online |
| libraries, e-PG Pathshaala etc<br>Further Suggestions: |                                                                                                                                                                                                                                                                            |                                 |

|                                                                                      |                                                                                                                                                                                                                                                                                                                                                           |                                                               | M.A./M.Sc. II Differential Geometry<br>Core-Elective (Group-1)                                                                                                                                                                        |                               |  |
|--------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|
| Progran                                                                              | Programme/Class: M.A/M.Sc.       Year: UG Fifth year of PG II Year                                                                                                                                                                                                                                                                                        |                                                               |                                                                                                                                                                                                                                       |                               |  |
| Cou                                                                                  | rse Code: 1020304                                                                                                                                                                                                                                                                                                                                         |                                                               | Course Title: Differential Geometry                                                                                                                                                                                                   | Theory                        |  |
| surfaces, curva<br>Course outcor<br>CO1: Learn ab<br>CO2: : Familia<br>CO3: : Unders | tures, torsion, developable and<br>mes:<br>bout the concepts of curvature,<br>arize with several concepts of t<br>tand the concepts of developab                                                                                                                                                                                                          | l geodesics.<br>torsion, invo<br>angent plane<br>ole surfaces | rted knowledge to enable them to understand several concepts of Differential G<br>dutes and evolutes.<br>e, Helicoids, metric and directioncoefficients<br>desic curvature and Gaussian curvatures                                    | eometry such as space curves, |  |
|                                                                                      | Credits:5 Core Elective                                                                                                                                                                                                                                                                                                                                   |                                                               |                                                                                                                                                                                                                                       |                               |  |
|                                                                                      |                                                                                                                                                                                                                                                                                                                                                           | То                                                            | otal No. of Lectures-Tutorial (05 hours per week): L-T: 5-1                                                                                                                                                                           |                               |  |
| Unit Topics                                                                          |                                                                                                                                                                                                                                                                                                                                                           |                                                               | No. of Lectures Total 60                                                                                                                                                                                                              |                               |  |
| Ι                                                                                    |                                                                                                                                                                                                                                                                                                                                                           | netric tensor,                                                | ensor and vector, Contraction, Inner Product, Symmetric and skew-symmetri<br>, Relative tensor, Alternate tensor, Isotropic tensor, Christoffel Symbols an<br>Bianchi's identity.                                                     |                               |  |
| П                                                                                    | II Space Curves: Metric tensor of the Euclidean space of three dimensions, Tangent to a curve, Osculating plane, Serret Frenet formulae, Fundamental planes, Curvature of a curve, Torsion of a curve, Contact between curves and surfaces, Locus of centre of spherical curvature, Spherical Indicatrix, Tangent surface, involutes and evolutes, Helix. |                                                               |                                                                                                                                                                                                                                       |                               |  |
| III                                                                                  | fundamental quadratic for                                                                                                                                                                                                                                                                                                                                 | m of the sur                                                  | ormation, Curves on a surface, Tangent plane and normal to the surface, First<br>face, Angle between two parametric curves, Angle between a parametric curv<br>rthogonal Trajectories, Second fundamental tensor, Weingarten formulae |                               |  |

| IV                   | IVThe Normal Curvature of a surface: Normal curvature of a surface, Principal directions, Principal curvatures,<br>Lines of curvature on a surface, Conjugate directions on a surface, Asymptotic direction at a point of a surface,<br>Mean curvature, Gaussian curvature, Minimalsurface, Gauss characteristic equation, Mainardi-Codazzi equations. |              |  |  |  |  |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--|--|--|--|
| V                    | Geodesics: Normal property of geodesics, Torsion of a geodesic, Geodesic torsion of a curve Geodesic curvature of a                                                                                                                                                                                                                                    |              |  |  |  |  |
|                      | Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assign                                                                                                                                                                                                                                      | nments, etc. |  |  |  |  |
| Suggested Rea        | dings:                                                                                                                                                                                                                                                                                                                                                 |              |  |  |  |  |
| 1. Weatherbur        | n, C. E. Differential Geometry of Three Dimensions, Cambridge University Press, 2016.                                                                                                                                                                                                                                                                  |              |  |  |  |  |
| 2. Graustein,        | W. C. Differential Geometry. Courier Corporation, 2012.                                                                                                                                                                                                                                                                                                |              |  |  |  |  |
| <b>3.</b> Wilmore T. | J. An Introduction to Differential Geometry, Dover Publications Inc., 2012.                                                                                                                                                                                                                                                                            |              |  |  |  |  |
| 4. Pressley, A       | A. Elementary Differential Geometry. Springer, 2002.                                                                                                                                                                                                                                                                                                   |              |  |  |  |  |
| Suggested Co         | ontinuous Evaluation Methods:                                                                                                                                                                                                                                                                                                                          |              |  |  |  |  |
| Continuous in        | Continuous internal evaluation through internal tests quizzes and Presentation.                                                                                                                                                                                                                                                                        |              |  |  |  |  |
| Further Sugge        | estions:                                                                                                                                                                                                                                                                                                                                               |              |  |  |  |  |
|                      |                                                                                                                                                                                                                                                                                                                                                        |              |  |  |  |  |

|                                                                                                                                                                       |                                                                                                         | M.A./M.Sc. II Algebraic Topology<br>Core-Elective (Group-1)                                                  |                 |                                                              |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------|--|
| Program                                                                                                                                                               | ne/Class: M.A/M.Sc.                                                                                     | Year: UG Fifth year of PG II Year                                                                            | Seme            | ester: Fourth/Tenth                                          |  |
| Course Code: 1020305Course Title: Algebraic TopologyThe                                                                                                               |                                                                                                         |                                                                                                              |                 | Гheory                                                       |  |
| copology, (co)homology<br>Course outcomes:<br>CO1: Understand the ba<br>CO2: Determine fundam<br>CO3: Understand proofs                                               | theory and complex/real algebraic<br>sics of Algebraic Topology.<br>ental groups of some standard space | ces like Euclidean spaces and spheres.<br>Sundamental theorem of Algebra and Hurwitz-uniformization theorem. | scuss different | connections with differential                                |  |
| Credits: 5                                                                                                                                                            |                                                                                                         |                                                                                                              |                 | Max Marks<br>+ Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |
|                                                                                                                                                                       |                                                                                                         | Total No. of Lectures-Tutorial (05 hours per week):                                                          | L-T: 5-1        |                                                              |  |
| Unit                                                                                                                                                                  |                                                                                                         | Topics                                                                                                       |                 | No. of Lectures Total 6                                      |  |
| I                                                                                                                                                                     | Homotopy of paths, Fundament<br>points, Fundamental group of t                                          | tal group, Covering spaces, Fundamental group of the circle, Retractions he punctured plane.                 | and fixed       | 12                                                           |  |
| п                                                                                                                                                                     | Deformation retract sandhotopy theorem of Algebra.                                                      | y type, Fundamental group of S <sup>n</sup> , Essential and inessential maps, Fundar                         | mental          | 12                                                           |  |
| <b>III</b> Topology of $E^n$ , Borsuk's separation theorem, Deformation of subsets of $E^{n+1}$ , Jordan curve theorem, Fiber spaces, Hurwicz Uniformization theorem. |                                                                                                         |                                                                                                              | 12              |                                                              |  |
| IV                                                                                                                                                                    | Classification of surfaces: Func<br>Classification theorem.                                             | lamental groups of surfaces, Homology of Surfaces, Cutting and pasting                                       | 5,              | 12                                                           |  |
| V                                                                                                                                                                     | Short Exact Sequences, Long E domain.                                                                   | Exact Sequences, Mayer -Vietoris Sequence, Excision Theorem, Invarian                                        | nce of          | 12                                                           |  |

Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.

## Suggested Readings:

- 1. Deo, S.: Algebraic Topology, Springer Singapore, 2018
- 2. Dugundj ,J.: Topology, Allyn and Bacon, New York, 1975.
- 3. Greenberg, Marwin J and Harper, J. R. Algebraic Topology A First Course (1st Edition), CRC Press, 2018
- 4. Massey, W.S.: Algebraic Topology- An Introduction, Springer India, 2010
- 5. Munkres, James R.: Topology A First Course, Prentice Hall of India, Delhi 2018.
- 6. Spanier, E.H.: Algebraic Topology (3<sup>rd</sup> Edition), Springer, 1994.

Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal tests quizzes and Presentation.

Further Suggestions:

|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              | M.A./M.Sc. II<br>Mathematical Modelling & Simulation<br>Core-Elective (Group-1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                    |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|--------------------------------------------------------------------|--|
| Prog                                                                                                                                                                                                                                                                                                                                                                                                                                | ramme/Class: M.A/ M.Sc.                                                      | Year: UG Fifth year of PG II Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Sen               | nester: Fourth/Tenth                                               |  |
| (                                                                                                                                                                                                                                                                                                                                                                                                                                   | Course Code: 1020306                                                         | Course Title: Mathematical Modeling & Simulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                   | Theory                                                             |  |
| familiar with mathe<br>Course outcomes<br>CO1: Apply Simu<br>CO2. Apply differ<br>CO3. Apply inverse                                                                                                                                                                                                                                                                                                                                | ving mathematical and engineering p<br>ematical modeling of real-world situa |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                                                                    |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                     | Το                                                                           | otal No. of Lectures-Tutorial (05 hours per week): L-T: 5-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                   |                                                                    |  |
| Unit                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                              | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   | No. of Lectures Total 60                                           |  |
| I                                                                                                                                                                                                                                                                                                                                                                                                                                   | Modelling through ordinary diff                                              | n Mathematical Modelling, Mathematical Modelling through Calculus, Mathematical equation of first order, Linear Growth and Decay model, Non-linear Growth an | tical<br>owth and | 12                                                                 |  |
| II Mathematical Modelling through System of Differential Equations: Modelling in population dynamics,<br>Mathematical Modelling of Epidemics through system of differential equation of first order, Mathematical Modelling<br>in Economics based on system of differential equation of first order, Mathematical Modelling in Medicine, Arms,<br>Race Battles and International Trade in terms of ordinary differential equations. |                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12                |                                                                    |  |
| III                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                              | <b>ugh Difference Equations:</b> Need of Mathematical Modelling through Difference<br>ling through Difference Equations in Economics, Finance, Population dynamics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                   | 12                                                                 |  |

| IV                                                                                                        | Mathematical Modelling through Graphs: Environment that can be modelled through Graphs, Mathematical Modelling in terms of Directed Graphs, Signed Graphs, weighted Diagraphs, Non-oriented Graphs.                                                                                           | 12 |  |  |  |
|-----------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|
| v                                                                                                         | <b>Simulation:</b> Simulation to study differential equations and stochastic models, Software simulation of simple dynamical systems, Linear feedback control systems, Simulation of piecewise linear systems, Simulation of nonlinear mathematical models. Simulation of Mechanical Systems. | 12 |  |  |  |
| <b>Teaching Learning P</b>                                                                                | rocess: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.                                                                                                                                                                                     |    |  |  |  |
|                                                                                                           | :<br>, E. A. An introduction to mathematical modeling. Courier Corporation. (2012)<br>haert, M. M. (2013). Mathematical Modelling, Academic Press. (2013)                                                                                                                                     |    |  |  |  |
| Suggested Continuou                                                                                       | s Evaluation Methods: Continuous internal evaluation through internal Tests, quizzes and Presentation.                                                                                                                                                                                        |    |  |  |  |
| Course prerequisites: To study this course, a student must have had the subject Mathematics in UG degree. |                                                                                                                                                                                                                                                                                               |    |  |  |  |
| Further suggestions:                                                                                      |                                                                                                                                                                                                                                                                                               |    |  |  |  |

|                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |                                                                                       | M.A./M.Sc. II Partial Differentia<br>Core-Elective (Group                                                                                                                                                                                                                                                                                                                                              | -                                                                                               |                                                                |                   |                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-------------------|--------------------------------|
| Programm                                                                                                                                                                                                                                                                                                           | e/Class: M.Sc./M.A.                                                                                                                                                                         |                                                                                       | Year: UG Fifth year of PG II Y                                                                                                                                                                                                                                                                                                                                                                         | ear                                                                                             |                                                                | Semest            | ter: Fourth/Tenth              |
| Course                                                                                                                                                                                                                                                                                                             | Course Code: 1020307Course Title: Partial Differential EquationT                                                                                                                            |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                 | The                                                            | eory              |                                |
| phenomena. Text of t<br>and Wave equation, a<br>fluid dynamics, conti<br><b>CO1:</b> Understand the<br><b>CO2:</b> Classify second<br><b>CO3:</b> Determine inter                                                                                                                                                  | this paper is organized<br>and various explicit fo<br>nuum mechanics and<br>e partial differential eq<br>d order PDE and solve<br>egral surfaces passing                                    | to study the<br>rmulas for<br>optics are a<br>puation pro-<br>boundary<br>through a c | l of science and engineering, therefore the sol<br>four important fundamental linear partial dif<br>polutions along with their numerical solutions<br>so included in this paper. Course outcomes:<br>lem and analyze linear and non-linear systems<br>value problems by using separation of variable<br>rve, characteristic curves of second order PD<br>ignificant PDEs like wave equation, heat equa | ferential equations: Tra<br>using finite difference<br>s.<br>e method<br>E and compatible syste | ansport equ<br>method. No<br>ems.                              | ation. L          | aplace equation. Heat equation |
| Credi                                                                                                                                                                                                                                                                                                              | Credits: 5 Core Elective (Int.                                                                                                                                                              |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        | (Int. ·                                                                                         | Max Marks<br>. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |                   |                                |
|                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                             |                                                                                       | Fotal No. of Lectures-Tutorial (05 hours p                                                                                                                                                                                                                                                                                                                                                             | er week): L-T: 5-1                                                                              | <b>I</b>                                                       |                   |                                |
| Unit                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                             |                                                                                       | Topics                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                 |                                                                |                   | No. of<br>Lectures Total 60    |
| I                                                                                                                                                                                                                                                                                                                  | Examples of PDE, of equation: Fundament                                                                                                                                                     | Classificati                                                                          | n, Transport equation: Initial value problem,<br>Mean value formulas, Properties of harmonic                                                                                                                                                                                                                                                                                                           | non-homogeneous equ<br>c functions, Energy me                                                   | uation, Lap<br>ethods.                                         | olace's           | 12                             |
| П                                                                                                                                                                                                                                                                                                                  | II Heat equation: Fundamental solution; Mean value formula, Properties of solutions, Energy methods, Wave equation: Solution by spherical means, non-homogeneous equations, Energy methods. |                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                        | lve                                                                                             | 12                                                             |                   |                                |
| III Nonlinear first order PDE complete integrals, Envelopes, Characteristics; Hamilton Jacobi equations (Calculus of variations, Hamilton's ODE, Legendre transform, Hopf-Lax formula, Weaksolutions, Uniqueness), Conservationlaws (Rankine-Hugoniot condition, Lax-Oleinik formula, Weak solutions, Uniqueness). |                                                                                                                                                                                             |                                                                                       | of-Lax                                                                                                                                                                                                                                                                                                                                                                                                 | 12                                                                                              |                                                                |                   |                                |
| IV                                                                                                                                                                                                                                                                                                                 | Representation of S<br>Linder Scaling), Fo<br>Potential Functions                                                                                                                           | olutions-S<br>ourier and                                                              | paration of Variables, Similarity Solutions (E<br>aplace Transform, Hopf-Cole Transform, H                                                                                                                                                                                                                                                                                                             | Plane and Traveling W<br>Hodograph and Legen                                                    | Vaves, Simi<br>dre Transf                                      | ilarity<br>Forms, | 12                             |

| V                  | Applications of PDE: Vibration governed by one- and two-dimensional wave equations, vibrations of string and membranes, three dimensional problems, Diffusion equation, resolution of boundary value problems for diffusion equations and elementary solutions of diffusion equation.           | 12                               |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Teaching Learning  | Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.                                                                                                                                                                                      |                                  |
| 2. John            | s:<br>s, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, Volume19, AMS, 1998.<br>F.: Partial Differential equations, Springer- Verlag, N.Y., 2013.<br>Id, P. and Ravindran, R.: Partial Differential Equations (2nd Edition), New AgeInternational Pub, New Delhi, 2011. |                                  |
| Suggested Continu  | ous Evaluation Methods: Continuous internal evaluation through internal Tests, quizzes and Presentation.                                                                                                                                                                                        |                                  |
| Course prerequisit | es: To study this course, a student must have had the subject Mathematics in UG degree.                                                                                                                                                                                                         |                                  |
| Suggested equivale | ent online courses: There are online courses on the channels such as Swayam Prabha, Moocs, and NPTEL. E-contents                                                                                                                                                                                | from different online libraires. |
| Further Suggestion | ns:                                                                                                                                                                                                                                                                                             |                                  |

|                                                                                                                                                                                                                               |                                                                                                                                                                     | M.A./M.Sc. II CRYPTOGRAPHY AND NETWORK SECURITY<br>Core-Elective (Group-2)                          |                                     |                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-------------------------------------|-----------------------------------------------------------------------------------------------|
| Programme/Cl                                                                                                                                                                                                                  | ass: M.Sc./M.A.                                                                                                                                                     | Year: UG Fifth year of PG II Year                                                                   | Sem                                 | ester: Fourth/Tenth                                                                           |
| Course Co                                                                                                                                                                                                                     | Theory                                                                                                                                                              |                                                                                                     |                                     |                                                                                               |
| secure information a<br>that are hard to decip<br><b>CO1:</b> These algorith<br>communication like<br><b>CO2:</b> Cryptography<br>explore what these ra<br><b>CO3:</b> Cryptography<br><b>CO4:</b> Confidentiality            | nd communication<br>other.<br>This are then used<br>credit card transact<br>achieves several<br>eveal about crypton<br>protects the confidence<br>is a key priority | information security-related objectives including confidentiality, integrity, and authentication, a | ithms, to<br>sing on t<br>and non-t | transform messages in ways<br>the internet, and confidential<br>repudiation. In this post, we |
| Credits: 5 Core Elective (Int.                                                                                                                                                                                                |                                                                                                                                                                     |                                                                                                     | · ·                                 | Max Marks<br>- Ext.): 25+75 Total = 100<br>Minimum Marks: 40                                  |
|                                                                                                                                                                                                                               |                                                                                                                                                                     | Total No. of Lectures-Tutorial (05 hours per week): L-T: 5-1                                        |                                     |                                                                                               |
| Unit                                                                                                                                                                                                                          |                                                                                                                                                                     | Topics                                                                                              |                                     | No. of<br>Lectures Total 60                                                                   |
| I Introduction to Cryptology, Symmetric Cipher Model, Substitution Techniques, Playfair Cipher, Hill Cipher, Polyalphabetic Ciphers, Transportation Techniques, Traditional Block Cipher Structure, Data Encryption Standard. |                                                                                                                                                                     |                                                                                                     |                                     | 12                                                                                            |
| п                                                                                                                                                                                                                             | 12                                                                                                                                                                  |                                                                                                     |                                     |                                                                                               |
| III Introduction to Public Key Cryptography, The RSA Algorithm, Diffie-Hellman Key Exchange, Elgamal Cryptographic System, Discrete Logarithm Problems.                                                                       |                                                                                                                                                                     |                                                                                                     |                                     | 12                                                                                            |
| IV                                                                                                                                                                                                                            | Authentication                                                                                                                                                      | s and Their Arithmetic, Elliptic Curve Cryptography, Cryptographic Hash Functions, M<br>Code.       | C                                   | 12                                                                                            |

| V                           | Digital Signatures, Elgamal Digital Signature Scheme, Schnorr Digital Signature Scheme, NIST Digital Signature<br>Algorithm, Symmetric Key Distribution using Symmetric and Asymmetric Encryption, Distribution of Public Keys. | 12                            |
|-----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Teaching Learning           | g Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.                                                                                                                    |                               |
| Suggested Readin<br>1. Will | gs:<br>iam Stallings, Cryptography and Network Security, Pearson.                                                                                                                                                               |                               |
| 2. P.                       | Garrett, An Introduction to Cryptology, Prentice Hall.                                                                                                                                                                          |                               |
| 3. B.                       | Schneier, Applied Cryptography, Wiley.                                                                                                                                                                                          |                               |
| 4. T.                       | Beth, M. Frisch, G. Simmons, Public key Cryptography, Springer-Verlag.                                                                                                                                                          |                               |
| Suggested Continu           | tous Evaluation Methods: Continuous internal evaluation through internal Tests, quizzes and Presentation.                                                                                                                       |                               |
| Course prerequisi           | tes: To study this course, a student must have had the subject Mathematics in UG degree.                                                                                                                                        |                               |
| Suggested equival           | ent online courses: There are online courses on the channels such as Swayam Prabha, Moocs, and NPTEL. E-contents from                                                                                                           | n different online libraires. |
| Further Suggestio           | ns:                                                                                                                                                                                                                             |                               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                          | M.A./M.Sc. II Mathematical Biol<br>Core-Elective (Group-2)                           | logy                    |                                                         |                             |        |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------------------|-------------------------|---------------------------------------------------------|-----------------------------|--------|--|
| Prog                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ramme/Class: N                         | 1.Sc.                                                                    | Year: UG Fifth year of PG II Year                                                    |                         | Semester: I                                             | Fourth/Tenth                |        |  |
| Cou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | urse Code: 1020                        | 309                                                                      | Course Title: Mathematical Biology                                                   |                         | Theory                                                  |                             | Theory |  |
| Biological Šyste<br>CO1. Relate ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ems Course outco<br>athematical notion | e certain mathemati<br>omes:<br>ons with biological problems using discu | cal tools like linear algebra, probability, Difference<br>ohenomena.<br>ssed models. | equations and Different | ial equations i                                         | n modeling some aspects of  |        |  |
| Credi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |                                                                          |                                                                                      |                         | Max Marks<br>xt.): 25+75 Total = 100<br>nimum Marks: 40 |                             |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |                                                                          | Total No. of Lectures-Tutorial (05 hours per w                                       | veek): L-T: 5-1         |                                                         |                             |        |  |
| Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                        |                                                                          | Topics                                                                               |                         |                                                         | No. of<br>Lectures Total 60 |        |  |
| I Dynamic modeling with difference equations; The Malthusian Model, Nonlinear Models, Analyzing Nonlinear Models, Variations on the Logistic Model, Comments on Discrete and Continuous Models. Linear Models of Structured Populations; Linear models and Matrix Algebra Projection Matrices for Structured Models. Reproduction and the drive for survival; The Darwinian Model of Evolution, Cells, replication of Living Systems, Population Growth and its Limitations, The Exponential Model for Growth and Decay. Age–Dependent Population Structures; Aging and Death, The Age–Structure of Populations, Predicting the Age–Structure of a Population. |                                        |                                                                          |                                                                                      |                         | 12                                                      |                             |        |  |
| IIBackground on DNA, An Introduction to Probability, Conditional Probabilities, Matrix Models for base substitution,<br>Phylogenetic Distances, Phylogenetic Trees.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |                                                                          |                                                                                      | ostitution,             | 12                                                      |                             |        |  |
| IIIAsexual Cell Reproduction, Sexual Reproduction, Classical Genetics, A Final Look at Darwinian Evolution, The Hardy-<br>Weinberg Principle, The Fixation of a Beneficial Mutation. Mendelian genetics, Probability distribution in Genetics,<br>Linkage, Gene Frequency in populations.                                                                                                                                                                                                                                                                                                                                                                      |                                        |                                                                          |                                                                                      |                         | 12                                                      |                             |        |  |
| IV Infectious Disease Modeling; Elementary Epidemic Models, Threshold Values and Critical Parameters, Variations on a Theme, Multiple Population and Differentiated Infectivity.                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                        |                                                                          |                                                                                      | 12                      |                                                         |                             |        |  |
| V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | A Mathematic<br>Model for a M          | cal Approach to HIV<br>Iutating AIDS, Prec                               | 7 and AIDS; Viruses, The Immune System, HIV and licting the Onset of AIDS.           | d AIDS, An HIV Infecti  | on Model, A                                             | 12                          |        |  |

Teaching Learning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.

**Suggested Readings:** 

- **1.** Barnes, B., Fulford, G. R. Mathematical Modelling with Case Studies, CRC Press. (2008)
- 2. Chou. C. S., Friedman, A. Introduction to Mathematical Biology. Springer. (2016)
- 3. Keshet, L.E., Mathematical Models in Biology, Random House New York. (1998)

Suggested Continuous Evaluation Methods: Continuous internal evaluation through internal Tests, quizzes and Presentation.

Course prerequisites: To study this course, a student must have had the subject Mathematics in UG degree.

Suggested equivalent online courses: There are online courses on the channels such as Swayam Prabha, and NPTEL. E-contents from different online libraires.

Further Suggestions:

|                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                       | M.A./M.Sc. II<br>File Structure and Data Base Management<br>Core-Elective (Group-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|
| Progra                                                                                                                                                                                                                                                                           | mme/Class: M.Sc.                                                                                                                                                                                                                                      | Year: UG Fifth year of PG II Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Semester: Fourth/Tenth                                       |
| Cours                                                                                                                                                                                                                                                                            | se Code: 1020310                                                                                                                                                                                                                                      | Course Title: File Structure and Data Base Management                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Theory                                                       |
| <ol> <li>To und</li> <li>To disc</li> <li>To ma</li> <li>To pro</li> <li>To pro</li> <li>To des</li> <li>To tran</li> <li>To dev</li> <li>To dev</li> <li>Course outcor</li> <li>CO1: Explain to</li> <li>CO2: Improve</li> <li>CO3: Design 1</li> <li>SQL queries or</li> </ol> | cuss the advantages of<br>ke a logical and analyt<br>wide strong dimension<br>ign and implementation<br>sform ERD (Entity Revelop good skills in SQ<br>nes:<br>the basic concepts of rev<br>the database design by<br>ER-models to represent<br>data. | epts of file organization and Database,<br>epts of file organization and Database,<br>database system over conventional file system,<br>ical comparison of different Data Models,<br>s, strengths and future prospects of Database Systems,<br>n of Database Modeling,<br>elationship Diagram) into relations,<br>L (Structured Query Language).<br>elational data model, entity-relationship model, relational database design, relational alge<br>normalization and describe the fundamental elements of relational database management<br>simple database application scenarios and convert the ER-model to relational table<br>prage structures and access techniques: file and page organizations, indexing methods inc | nt systems<br>es, populate relational database and formulate |
| Cre                                                                                                                                                                                                                                                                              | dits: 5                                                                                                                                                                                                                                               | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40        |
|                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                       | Total No. of Lectures-Tutorial (05 hours per week): L-T: 5-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                              |
| Unit                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                       | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | No. of<br>Lectures Total 60                                  |
| I                                                                                                                                                                                                                                                                                | files. Index sequer                                                                                                                                                                                                                                   | The constitution of a file,Operations on files, Primary key Retrieval, Sequential ntial files:implicit index,L limit indexing multi-level,Indexing schemes, Structure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                              |
|                                                                                                                                                                                                                                                                                  | Retrieval: Invertee<br>Capacity, B Tree,                                                                                                                                                                                                              | 1 file, VSAM direct files, Hashing techniques, Extended hashing, Secondary Key<br>1 and Multi list files, Indexing Using Tree Structures: Tree schemes, Operation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12                                                           |

Curriculum & Syllabus Post Graduation and Fourth, Fifth- & Sixth-year course Under NEP2020, Mathematics

| ш              | Structural Query Language (SQL): Data definition, Data manipulation, Condition Specification, Arithmetic and aggregate operators, SQL join, Set Manipulation, Categorization, Updates.                                                                  | 12                                              |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
| IV             | Relational Database Design: Functional dependencies, First, second third and BCNF normal Forms, Data integrity and recovery.                                                                                                                            | 12                                              |
| V              | Database Security, Integrity and Control Security and Integrity threats, Defense mechanism, Integrity, Auditing and Control, Recent trends in DBMS- Distributed and Deductive Database.                                                                 | 12                                              |
| 0              | rning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignmen                                                                                                                                                | ts, etc.                                        |
| 2. De          | te C.J.: Introduction to Database System, Addison Wesley, 2003.<br>esai ,B.: An Introduction to Database System, Galgotia Publications, 2016.<br>Iman ,J.D.: Principles of Database Systems (2 nd Edition), Galgotia Publications Pvt.Ltd., 1994/W.H. F | reeman & Co. Ltd., 1982.                        |
| Suggested Con  | ntinuous Evaluation Methods: Continuous internal evaluation through internal Tests, quizzes and P                                                                                                                                                       | Presentation.                                   |
| Course prerec  | uisites: To study this course, a student must have had the subject Mathematics in UG degree.                                                                                                                                                            |                                                 |
| Suggested equ  | ivalent online courses: There are online courses on the channels such as Swayam Prabha, and NPT                                                                                                                                                         | EL. E-contents from different online libraires. |
| Further Sugges | tions:                                                                                                                                                                                                                                                  |                                                 |

|                                                                                                                                                                                                                                                                                                 | An Introd                                                                                                                                                   | M.A./M.Sc. II<br>uction to Fuzzy Logic, Genetic Algorithm & Neural Net<br>Core-Elective (Group-2)                                                                                                                                                                                                                                                                                                                                                                                                        | works                    |                                                                    |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------|--|--|--|
| Programme/Class: N                                                                                                                                                                                                                                                                              | Programme/Class: M.A./M.Sc.Year: UG Fifth year of PG II YearSemester: Fourth/Tenth                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                    |  |  |  |
| Course Code: 1                                                                                                                                                                                                                                                                                  | Course Code: 1020311 Course Title: An Introduction to Fuzzy Logic, Genetic Algorithm & Neural 1                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |                                                                    |  |  |  |
| in a better way for the rapidemployment if the electronics<br><b>Course outcomes:</b><br><b>CO1</b> . This theory helps to solic<br><b>CO2.</b> This theory provides and<br>by genetic algorithm, neural in<br><b>CO3</b> . This theory can be used<br><b>CO4</b> . On the basis of this theory | dly evolving high-te<br>equipment's where over<br>those problems where<br>excellent tool to han<br>betwork.<br>to make modern sys<br>ory many real-life bas | with some state-of-the-art fuzzy-logic, Genetic Algorithm Optimisation and<br>ech information-based modern industry and market. After completing the<br>computational artificial intelligence is used.<br>hich are described in linguistic terms.<br>dle the vagueness in modern science and technology problems such as comp<br>tems based on Artificial Intelligence (A.I) and soft computing.<br>sed problems can be solved such as robotics, management etc.<br>uzzy information in decision making, | nis cours                | e, the students will be able to get                                |  |  |  |
| Credits: 5                                                                                                                                                                                                                                                                                      |                                                                                                                                                             | Core Elective                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |  |  |
|                                                                                                                                                                                                                                                                                                 | I                                                                                                                                                           | Total No. of Lectures-Tutorial (05 hours per week): L-T: 5-1                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                                                    |  |  |  |
| Unit                                                                                                                                                                                                                                                                                            |                                                                                                                                                             | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                          | No. of Lectures Total 60                                           |  |  |  |
| I                                                                                                                                                                                                                                                                                               | properties of a-cut                                                                                                                                         | cs concepts on crisp sets, Crisp relations, Fuzzy sets, $\alpha$ -cuts, Addit<br>s, Level sets, Cardinality of Fuzzy Sets, Types of fuzzy sets, L-Fuzzy<br>Fuzzy Cartesian products,                                                                                                                                                                                                                                                                                                                     |                          | 12                                                                 |  |  |  |
| П                                                                                                                                                                                                                                                                                               | conorms, combinat<br>Fuzzy Number, Ty<br>Fuzzy Numbers.Fu<br>fuzzy relations, bin                                                                           | zy Sets: Fuzzy complement, Fuzzy union. Fuzzy intersection, T-norm<br>ion of operations, General aggregation Operations. Fuzzy numbers: Conce<br>pes of Fuzzy Numbers (Triangular and Trapezoidal), Arithmetic operation<br>zzy Relations: Fuzzy relations, Projections and Cylindric extensions, B<br>nary relations on single set, Fuzzy equivalence relations, Fuzzy partial<br>lering relations. Fuzzy ranking method.                                                                               | ept of<br>ns on<br>inary | 12                                                                 |  |  |  |

| ш                                                                                                                                                                         | Crisp Logic, Predicate Logic, Fuzzy logic and Possibility theory: Fuzzy propositions, Fuzzy quantifiers, Linguistic hedges, Inference from conditional fuzzy propositions, Inference from conditional and qualified propositions, Fuzzy Controller and Fuzzy Inference System: Fuzzification, Defuzzification (Center of area (COA), Center of maxima (COM), Min of max method (MOM), Center of sums, Weighed average method) Fuzzy rules, Fuzzy controller, Fuzzy                                                                                                                                                                                                                                                                                                                             | 12                       |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
|                                                                                                                                                                           | inference systems (Mamdani, Sugeno's and Tsukamoto)           Genetic Algorithm(GA): History and basic concepts, search space, Encoding, Fitness function,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| IV                                                                                                                                                                        | Reproduction: Roulette-wheel selection, Boltzmann selection, rank selection, steady state selection, elitism, generation gap and steady state replacement. Crossover, Inversion and Deletion, Mutation operators, Bitwise operators, generation cycle, convergence in GA, optimisation under GA.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12                       |
| V                                                                                                                                                                         | Neural Networks: History, Characteristics, Architecture and Basic concepts, Back Propagation<br>Networks (BPN) and learning, Effect of tuning parameters in BPN, Selection of parameters in BPN,<br>BPN algorithm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 12                       |
| <b>Teaching Learning</b>                                                                                                                                                  | Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                          |
| <ol> <li>Academioc Pr</li> <li>Klir . Georage</li> <li>Lee, Kwang H.</li> <li>Ross, Timothy</li> <li>Roger, Jyh-Sh<br/><u>MATLAB curri</u></li> <li>Zimmermann</li> </ol> | <ul> <li>Fr and Prade, Henri, Fuzzy Sets and systems Theory and Applications,</li> <li>Fr and Yuan Bo, Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall of India, New Delhi. 2009</li> <li>First Course on Fuzzy Theory and Applications, Springer International Edition, 2009.</li> <li>J., Fuzzy Logic with Engineering Applications, McGraw Hills inc., 2004 New Delhi</li> <li>fing; Sun, Chuen-Tsai; Mizutani, Eiji, Neuro-fuzzy and Soft Computing: A Computational Approach to Learning an <i>Culum series</i>, illustrated, reprint, Prentice Hall, 1997</li> <li>H.J. Fuzzy Set Theory &amp; its Applications, Allied Publishers Ltd. New Delhi, 2006.</li> <li>Vijayalakshmi G.A., Neural Networks, Fuzzy Logic and Genetic Algorithm, (EEE) PHI, 2011.</li> </ul> | nd Machine Intelligence, |
| <b>Suggested Continuous</b>                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                          |
| 66                                                                                                                                                                        | aluation through internal tests, quizzes and Presentation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| Course prerequisites:                                                                                                                                                     | To study this course, a student must have had the subject Mathematics in UG degree.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |
| Suggested equivalent of There are online course                                                                                                                           | online courses:<br>so on the channels such as Swayam Prabha, and NPTEL, Moocs. E-contents from different online libraires.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |
| Further suggestions:                                                                                                                                                      | ·····                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                          |

|                                                                                                                                                                                                                                                                                                                                                                                                        | ]                                                                                                                                                                                                                                                                                                                                                                             | M.A./M.Sc. II Advanced DiscreteMathematics<br>Core-Elective (Group-2) |                                                                    |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------|--|--|--|
| Prog                                                                                                                                                                                                                                                                                                                                                                                                   | Programme/Class: M.A/M.Sc.Year: UG Fifth year of PG II YearS                                                                                                                                                                                                                                                                                                                  |                                                                       |                                                                    |  |  |  |
| (                                                                                                                                                                                                                                                                                                                                                                                                      | Course Code: 1020312                                                                                                                                                                                                                                                                                                                                                          | Course Title: Advanced DiscreteMathematics                            | Theory                                                             |  |  |  |
| Boolean algebr<br>Course outcor<br>CO1: : Analyz<br>CO2: : Unders<br>CO3: : Learn a                                                                                                                                                                                                                                                                                                                    | ra, bipartite graphsand trees and studyin                                                                                                                                                                                                                                                                                                                                     | ra in switching theory.                                               | and to give a brief introduction of                                |  |  |  |
| Credits: 5                                                                                                                                                                                                                                                                                                                                                                                             | соло р. с. р. ши Зайраз, несе на стал                                                                                                                                                                                                                                                                                                                                         | Core Elective                                                         | Max Marks<br>(Int. + Ext.): 25+75 Total = 100<br>Minimum Marks: 40 |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                        | ,<br>,                                                                                                                                                                                                                                                                                                                                                                        | Total No. of Lectures-Tutorial (05 hours per week): L-T: 5-1          |                                                                    |  |  |  |
| Unit                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                               | Topics                                                                | No. of Lectures Total 60                                           |  |  |  |
| Ι                                                                                                                                                                                                                                                                                                                                                                                                      | I Formal Logic: Statements, proposition, symbolic representation and tautologies, quantifiers, proposition logic.<br>Lattices: Lattices as partially ordered sets, their properties, lattices as algebraic systems, some special lattices, e.g., complete, complemented and distributive lattices, some special lattices e.g., bounded, complemented & distributive lattices. |                                                                       | e.g., 12                                                           |  |  |  |
| II Boolean Algebra: Boolean algebra as lattices, various Boolean identities, the switching algebraexample, join -<br>irreducible elements, atoms and minterms, Boolean Forms and their equivalence, minterm Boolean forms, sum of<br>products canonical forms, minimization of Boolean functions, applications of Boolean algebra to switching theory<br>(using AND, OR and NOT gates), Karnaugh maps. |                                                                                                                                                                                                                                                                                                                                                                               | of                                                                    |                                                                    |  |  |  |
| III                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                               |                                                                       | ate 12<br>iimal                                                    |  |  |  |

| IV                  | Matrix Representations of Graphs, Incidence Matrix, Circuit Matrix, Cut-Set Matrix, Adjacency Matrix, Euler's Theorem on the Existence of Eulerian Paths and Circuits. Directed Graphs. In degree and Out degree of a vertex. | 12              |
|---------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|                     | Weighted Graphs. Dijkstra's Algorithm                                                                                                                                                                                         |                 |
| V                   | Introductory Computability Theory-Finite State Machines and their Transition Table Diagrams, Finite Automata,                                                                                                                 | 12              |
|                     | Moore and Mealy Machines, Grammars and Languages-Phrase-Structure Grammars. Rewiting Rules, Derivations.                                                                                                                      |                 |
|                     | SententialForms. Language generated by a Grammar.Regular, Context-Free, and Context Sensitive Grammars and                                                                                                                    |                 |
|                     | Languages. Regular sets, RegularExpressions and the Pumping Lemma.Kleene's Theorem.                                                                                                                                           |                 |
| <b>Teaching Lea</b> | rning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, etc.                                                                                                              |                 |
| C                   |                                                                                                                                                                                                                               |                 |
| Suggested Rea       | adings:                                                                                                                                                                                                                       |                 |
| 1. Tremblay,        | J.P. and Manohar, R. Discrete Mathematical Structures with Applications to ComputerScience. Ist edition McGraw Hill                                                                                                           | Book Co., 2017. |
| 2. Lepschutz        | S. and Lipson, M. Linear Algebra. 5th edition, Tata McGraw Hill 2012.                                                                                                                                                         |                 |
| 3. Ram, B. D        | iscrete Mathematics. Pearson Education, 2012.                                                                                                                                                                                 |                 |
| 4. Kenneth H        | . R. Discrete Mathematics and Its Applications, 7th edition, Tata McGraw Hill, 2011.                                                                                                                                          |                 |
| 5. 5. Liu, C. I     | L. Elements of Discrete Mathematics. Tata McGraw Hill, 2000.                                                                                                                                                                  |                 |
| Suggested C         | ontinuous Evaluation Methods:                                                                                                                                                                                                 |                 |
| Continuous          | internal evaluation through internal tests quizzes and Presentation.                                                                                                                                                          |                 |
| Further sugge       | estions:                                                                                                                                                                                                                      |                 |
|                     |                                                                                                                                                                                                                               |                 |

## **Pre-Ph.D. Course work Syllabus**

| Sem.                                                                                                                                                                                                                                                                                                        | Paper<br>Code                                                                                                                                                                                   | ŗ                                                                                                                                                           | <b>Fitle of the Paper</b>                                                                                                                                                                                                                         | Lecture   | No. of<br>es(hrs.)/Duration | Credits             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-----------------------------|---------------------|
|                                                                                                                                                                                                                                                                                                             | 1120301                                                                                                                                                                                         | ]                                                                                                                                                           | Research Methodology                                                                                                                                                                                                                              | 60        |                             | 04                  |
|                                                                                                                                                                                                                                                                                                             | 1120302                                                                                                                                                                                         | A                                                                                                                                                           | dvanced Mathematics I                                                                                                                                                                                                                             | 60        |                             | 06                  |
| One                                                                                                                                                                                                                                                                                                         | 1120303                                                                                                                                                                                         | Ad                                                                                                                                                          | dvanced Mathematics II                                                                                                                                                                                                                            |           | 60                          | 06                  |
|                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                 | Survey/Research Project                                                                                                                                     |                                                                                                                                                                                                                                                   |           | One Semester                | Qualifying          |
|                                                                                                                                                                                                                                                                                                             | Pr                                                                                                                                                                                              | ·e-Ph.D. CC                                                                                                                                                 | OURSE WORK PAPER I, RESI                                                                                                                                                                                                                          | EARCH MI  | ETHODOLOGY                  |                     |
| Program                                                                                                                                                                                                                                                                                                     | me: Pre-Ph.D. Course w                                                                                                                                                                          | vork                                                                                                                                                        | <b>Duration</b> : Six Months                                                                                                                                                                                                                      |           | Semester: Fi                | irst                |
| C                                                                                                                                                                                                                                                                                                           | ourse Code: 1120301                                                                                                                                                                             |                                                                                                                                                             | Course Title: Research Methodo                                                                                                                                                                                                                    | ology     | Theory                      |                     |
| <ol> <li>Identify an</li> <li>Identify an</li> <li>Identify an</li> <li>Identify an</li> <li>Identify an</li> <li>Identify an</li> <li>Course Outcomes</li> <li>CO1. Understand s</li> <li>CO2. Explain key</li> <li>CO3. Select and de</li> <li>CO4. Organize and</li> <li>CO5. Write a researd</li> </ol> | d discuss the issues and<br>d discuss the complex is<br>d discuss the concepts a<br>the end of this court<br>some basic concepts of r<br>research concepts and is<br>efine appropriate research | nportance of res<br>concepts salient<br>sues inherent in<br>nd procedures o<br>rse, the students<br>esearch and its i<br>sues read, comp<br>h problem and p | earch in the social sciences.<br>t to the research process.<br>selecting a research problem, selecting an<br>f sampling, data collection, analysis and re<br>should be able to:<br>methodologies.<br>rehend, and explain research articles in the | eporting. |                             | a research project. |

|                                                                                                                    | Credits: 4 Core Compulsory                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                            |                    |  |  |
|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------|--|--|
|                                                                                                                    | Total No. of Lectures-Tutorial (05 hours per week): L-T: 4-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |                    |  |  |
| Unit                                                                                                               | Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            | No. of Lectures 50 |  |  |
| Ι                                                                                                                  | Perception & Definition of Research, Objectives & Motivations of Research, Importance of Research, Types of Research, Research<br>Methods versus Methodology, Process of Research, Review of Literature, Formulation of the Research Problem, Sources and<br>Identification of a Research Problem, Status of the Research Problem, Formulation of Hypothesis, Research Design, Ethics in<br>Research.                                                                                                                                                |                                                                            |                    |  |  |
| П                                                                                                                  | Synopsis, Funding Agencies in India for Research in Physical Sciences, Project Proposal, Project Report Writing, Research Paper Writing, Thesis Writing, Referencing, Formats of Writing References, Bibliography, Plagiarism, IPR, Technology Development and Transfer.                                                                                                                                                                                                                                                                             |                                                                            |                    |  |  |
| Ш                                                                                                                  | Types and Sources of Data, Data Collection Methods, Analysis of Data, Kertosis variance, Central Tendency,<br>Dispersion, Skewness, Correlation, Regression, Probability (Elementary), Binomial, Poisson and Normal Distribution, Baye's<br>rule and Independence of events, Chi-square test.                                                                                                                                                                                                                                                        |                                                                            |                    |  |  |
| IV                                                                                                                 | Computer Networking, Internet, Web Browsers, Search Engines, MS Word: Handling graphics tables and charts, Formatting in MS-Word, MS Power point: Creating Slide Show, Screen Layout and Views, Applying Design Template, MS Excel: Features, Formulas and Functions, Number system, Computer codes, BCD Code, EBCDIC, ASCII, Computer Arithmetic.                                                                                                                                                                                                   |                                                                            |                    |  |  |
| V                                                                                                                  | Subject Classification Index, Citation, Citation Index, Impact Factor, h-Reviewed and Open Access Journals, e-Journals, e-Library, Research Data Science-Direct etc.                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            | 10                 |  |  |
| Teaching                                                                                                           | Learning Process: Class discussions/ demonstrations, Power point presentation                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ons, Class activities/ assignments, Field visits., Internship, e           | etc.               |  |  |
| <ol> <li>Cresv</li> <li>Gupta</li> <li>Gupta</li> <li>Gupta</li> <li>Gupta</li> <li>Kuma</li> <li>Melvi</li> </ol> | <b>I Readings:</b><br>vell. W.: Research Design, Qualitative, Quantitative and Mixed Methods Appr<br><b>a. S</b> : Research Methodology: Methods and Statistical Techniques, Deep & Dee<br><b>a. S.P.:</b> Statistical Methods, Sultan Chand &Sons, 2014.<br><b>ar. R</b> : Research Methodology: A Step-by-Step Guide for Beginners (3 <sup>rd</sup> Edition<br><b>lle. S. and Goddard. W.:</b> Research Methodology: An Introduction (2 <sup>nd</sup> edition<br><b>is, T</b> .: The Language of ICT: Information and Communication Technology, Ta | ep Publications, 2010.<br>n), SAGE, Inc., 2011.<br>n),Juta Academic, 2004. |                    |  |  |
| Suggested                                                                                                          | Continuous Evaluation Methods: External evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |                    |  |  |
| Course p                                                                                                           | rerequisites: To study this course, a student must have had the subject Mat                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | hematics in PG degree                                                      |                    |  |  |
| uggested e                                                                                                         | equivalent online courses: There are online courses on the channels such as                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | s Swayam Prabha, and NPTEL. E-contents from different                      | online libraires.  |  |  |
| Further Su                                                                                                         | 1ggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                            |                    |  |  |

|                                                                                                                                                                                 | Pre-Ph.                                                                                                                                                                                                                                                                                                                                                                                                                                           | D. COURSE WORK PAPER II, Advanced Ma                                                                                                                                                                                                                  | thematics-I             |                    |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------|--|
| -                                                                                                                                                                               | Programme: Pre-Ph.D. Course work                                                                                                                                                                                                                                                                                                                                                                                                                  | Duration: Six Months Semester:                                                                                                                                                                                                                        |                         | First              |  |
|                                                                                                                                                                                 | Course Code: 1120302                                                                                                                                                                                                                                                                                                                                                                                                                              | Course Title: Advanced Mathematics-I                                                                                                                                                                                                                  | Theory                  |                    |  |
| <ol> <li>To in</li> <li>To lease</li> <li>Learn</li> <li>Learn</li> <li>Solva</li> <li>To in</li> <li>Course C</li> <li>CO1. App</li> <li>CO2. Der</li> <li>CO3. Kno</li> </ol> | the concept of Constructions of Fuzzy Sets and Op<br>the concept of automorphism on a finite field, Stru-<br>bility of Galois group of a polynomial over a field.<br>troduce the basic concept of Vedic mathematics<br><b>Dutcomes:</b> At the end of this course, the students sholy theoretical concepts in topology to understand re-<br>nonstrate knowledge and understanding of concepts<br>owledge and understanding thoroughly account for | Para compactness and Nagata-Smirnov Metrization theorem, Bin<br>berations on Fuzzy Sets, Fuzzy Optimization, Fuzzy control and<br>acture of multiplicative group of a finite field, Uniqueness of the<br>mould be able to:<br>eal world applications. | l fuzzy expert systems, | ty by radicals,    |  |
|                                                                                                                                                                                 | Credits: 6                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                       | Core Com                | pulsory            |  |
|                                                                                                                                                                                 | Total No                                                                                                                                                                                                                                                                                                                                                                                                                                          | o. of Lectures-Tutorial (05 hours per week): L-T: 4-1                                                                                                                                                                                                 |                         |                    |  |
| Unit                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Topics                                                                                                                                                                                                                                                |                         | No. of Lectures 50 |  |
| Ι                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                   | y condition, Quadratic programming: Wolfe's method. Integer p<br>the hand Bound technique. Gomory's cutting plane algorithm.                                                                                                                          | rogramming: Modeling    | 10                 |  |
| П                                                                                                                                                                               | Basic Concepts of Reliability: General Reliability Function, Failure and Failure modes, Hazard Rate, Bath tub Curve, Mean Time to Failure, Availability concepts. System Reliability: Reliability of Series, Parallel, Stand by Redundancy, k-out-of-n Configuration, Series-Parallel, Parallel-Series configurations and Bridge Structure                                                                                                        |                                                                                                                                                                                                                                                       |                         | 10                 |  |
| III                                                                                                                                                                             | Compactness: Compactness through nets and filte                                                                                                                                                                                                                                                                                                                                                                                                   | t of topological spaces, Arbitrary product of connected spaces,<br>ers, Tychonoff' theorem, Urysohn metrization theorem , Stone-C<br>on theorem, Bingmetrization theorem.                                                                             |                         | 10                 |  |
| IV                                                                                                                                                                              | Para compactness and Nagata-Smirnov Metrization theorem, Bingmetrization theorem.<br>Constructions of Fuzzy Sets and Operations on Fuzzy Sets, Fuzzy Optimization, Fuzzy control and fuzzy expert systems, Fuzzy<br>Inference: Composition rule, Fuzzy rule and Implication, Inference Mechanism, Inference methods, Fuzzy Sets in Decision-Making:                                                                                               |                                                                                                                                                                                                                                                       |                         |                    |  |

| V                                                                                     | Automorphism on a finite field, Structure of multiplicative group of a finite field, Uniqueness of the splitting field, Determining the degree of the splitting field of polynomials over a field, Finding the splitting field of polynomials over a field, Galois group of a polynomial over a field, Determining the elements of the Galois group of polynomials over a field, Solvability by radicals, Solvability of Galois group of a polynomial over a field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10                |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| VI                                                                                    | 16 Sutra And 13 Sub Sutras of Vedic Mathematics, Explanations of Ekadhiken Purvena, Eknueyena Purvena, Urdhwa Triyagbhyam Sutra, Contribution of Indian Mathematicians Madhvan, Parmeshvaran, Manjul Bhargav, Shakuntala Devi.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 10                |
| Teaching                                                                              | Learning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, Field visits., Internship, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                   |
| Course provide suggeste libraires.                                                    | I Continuous Evaluation Methods: Continuous internal evaluation through internal tests quizzes and Presentation.<br>rerequisites: To study this course, a student must have had the subject Mathematics in PG degree.<br>d equivalent online courses: There are online courses on the channels such as Swayam Prabha, and NPTEL. E-contents from different onlin<br>Suggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e                 |
| 1. Ba<br>2. Du<br>3. Ba<br>200<br>4. Bo<br>5. Ca<br>6. Ch<br>7. Ge<br>8. Lic<br>9. Mu | <ul> <li>I Readings:</li> <li>lagurusamy. E: Reliability Engineering, Tata McGraw Hill Publications, New Delhi, 2010.</li> <li>bosisand. D, Prade. H: Fuzzy Sets and Systems Theory and Applications, Academic Press, New York, 1980.</li> <li>zara. M. S., Sherali. H.D, Shetty .C.M: Nonlinear Programming-Theory and Algorithms (3<sup>rd</sup> Edition), John Wiley&amp; Sons, Inc., Hoboken, 1 06.</li> <li>urbaki.N: General Topology, Part-I, Addison-Wesley,1966.</li> <li>i, Kai-Yuan: Introduction to Fuzzy Reliability, Kluwer Academic Publishers, Boston/Dordrecht/London,1996.</li> <li>authaiwale. Shriram.: Enjoy Vedic Mathematics", Art of Living international Bangluru, India orge J. Klir and BoYuan: Fuzzy Sets and Fuzzy Logic: Theory and Applications, Prentice Hall of India, New Delhi, 2009.</li> <li>II. R., Niederreiter. H : Introduction to Finite Fields and their Applications (2<sup>nd</sup> Edition), Cambridge University Press, 1994.</li> <li>mkres, J.R.: Topology, Pearson Education Pvt Ltd, Delhi, 2018.</li> <li>ha.H.A: Operations Research-An Introduction (10<sup>th</sup>Edition), Pearson Publication, 2017.</li> </ul> | New Jersey,       |
| Suggestee                                                                             | I Continuous Evaluation Methods: External Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| Course p                                                                              | rerequisites: To study this course, a student must have had the subject Mathematics in PG degree.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                   |
|                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
| Suggestee                                                                             | d equivalent online courses: There are online courses on the channels such as Swayam Prabha, and NPTEL. E-contents from different of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | online libraires. |

|                                                                                                                                                                                                                                                               | Pre-Ph.D COURSE V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | VORK PAPER II, ADVANCED MAT                                                                                                                                                                                                                                                  | HEMATICS II                                                 |                          |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------|--|
|                                                                                                                                                                                                                                                               | Programme: Pre-Ph.D. Course work                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>Duration:</b> Six months                                                                                                                                                                                                                                                  | Semester:                                                   | First                    |  |
|                                                                                                                                                                                                                                                               | Course Code: 1120303                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Course Title: Advance Mathematics II                                                                                                                                                                                                                                         | Theory                                                      |                          |  |
| <ol> <li>To s</li> <li>Course Out</li> <li>CO1. Compoduct tran</li> <li>CO2. Thore</li> <li>CO3. Provi</li> </ol> | ectives: The objective of this paper is<br>tudy the basic concept of inventory theory, demand, de<br>tudy the Reliability Evaluation Techniques, Software Rel<br>tudy the basic concept of stability theory, Normal mode te<br>tudy the Secret key cryptography and Public key cryptogr<br>tudy the Inner product spaces, Hilbert spaces.<br>tudy the Derivative and Its Applications , Integrations and<br>comes: On completion of this course, students will be able<br>prehend the dynamics of inventory management's princip<br>asformation processes),<br>oughly account for industrial applications of different met<br>de security of the data over the network, Do research in the<br>rstand the notions of dot product and Hilbert space and applications of the data over the network. | iability.<br>echnique, stability of flow between two parallel pla<br>raphy.<br>I Its Applications by Vedic mathematics<br>e to:<br>les, concepts, and techniques as they relate to the en<br>hods in reliability theory<br>ne emerging areas of cryptography and network sec | ntire supply chain (customer de<br>urity                    | emand, distribution, and |  |
| <b>CO4</b> : Ond                                                                                                                                                                                                                                              | Credits: 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                              | Core Compulsory                                             |                          |  |
|                                                                                                                                                                                                                                                               | Total No. of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Lectures-Tutorial (in hours per week): L-T: 6                                                                                                                                                                                                                                | -0                                                          |                          |  |
| Unit                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Topics                                                                                                                                                                                                                                                                       |                                                             | No. of Lectures 60       |  |
| Ι                                                                                                                                                                                                                                                             | Analytical structure of inventory problems, Different of<br>lead time, Deterministic inventory models, Trapezoidal<br>time-varying deterioration, imperfect production proce<br>Bulk release rule, different type of holding costs. Conce                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | type demand rate, Stock and price dependent cons<br>ss, preservation technology, Two-warehouse inven                                                                                                                                                                         | umption rate, deterioration,<br>tory model, K-release rule, | 10                       |  |
| Ш                                                                                                                                                                                                                                                             | Reliability Evaluation Techniques: Binomial Theorem<br>Method, Two identical unit active and passive redunda<br>Methods in Probist system, Profust Reliability Theory<br>Theory.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | nt systems with constant failure and repair rates, S                                                                                                                                                                                                                         |                                                             | 10                       |  |
| ш                                                                                                                                                                                                                                                             | Basic concepts of stability theory, Normal mode techniq<br>layer, Instability of plane poiseuille flow. Thermal is<br>Boussinesq approximation, the principle of exchange<br>the Rayleigh Taylor instability, stability of non-viscous<br>of horizontal and vertical magnetic field.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nstability of layer of fluid heated from below: t of stabilities and the first variational principle.Sta                                                                                                                                                                     | he Benard convection, the bility of superposed fluids:      | 10                       |  |

| IV                                                                                                                               | Secret key cryptography and Public key cryptography, The discrete logarithm problem, Discrete logarithm problem over a finite field.<br>Diffie-Hellman Key Exchange. Elliptic curves, Elliptic curves over finite field, The elliptic curve discrete logarithm problem. Elliptic curve cryptography: Elliptic curve Diffie-Hellman Key Exchange, Elliptic curve Elgamal cryptosystem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10            |
|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| V                                                                                                                                | Inner product spaces, Hilbert spaces and their examples, Apolloniu's identity, Schwarz inequality, Triangle inequality, Orthogonality, Pythagorean theorem, Gram-Schmidt orthonormalization process, Continuity of inner product, Completion of an inner product space, Subspace of a Hilbert space, Orthogonal complements and direct sums, Projection, Projection theorem, Dual basis and dual spaces, Riesz representation theorem for bounded linear functionals on a Hilbert space, Strong and weak convergence.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10            |
| VI                                                                                                                               | Osculator, Recuuring Decimals, Quadratic Equations by Vedic Methods, Bi-quadratic Equations by Vedic Methods, Encryptions, Derivative and Its Applications , Integrations and Its Applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10            |
| Teach                                                                                                                            | ing Learning Process: Class discussions/ demonstrations, Power point presentations, Class activities/ assignments, Field visits., Internship, etc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.            |
| <ul> <li>4. En</li> <li>5. G</li> <li>6. H</li> <li>7. K</li> <li>8. M</li> <li>9. No</li> <li>10. No</li> <li>Rathy,</li> </ul> | <ul> <li>nandrasekhar. S.: Hydro dynamic and Hydromagnetic Stability-ChaptersI, II,VII,X, XI, Dover, NewYork, 1981.</li> <li>ninent Bharatiya Mathematicians: Dr Shriram Chauthaiwale, Dr Deviprasad Verma Devendra Deshmukh published by Vidya Bharati, Kuruk</li> <li>, Whitin. T.M.: Analysis of Inventory-Systems, Prentice Hall Inc.,1963.</li> <li>Diffstein. J, Pipher. J, J.H. Silverman: An Introduction to Mathematical Cryptography (2<sup>nd</sup>Edition), Springer, 2014.</li> <li>reyszig. E.: Introductory Functional Analysis with Applications, John Wiley and Sons, New York, 1978.</li> <li>eijer. A.R. : Algebra for Cryptologists (1<sup>st</sup>Edition), Springer,2016.</li> <li>nddor.E; Inventory System, John Wiley &amp; Sons, Wiley, New York, 1966.</li> <li>nth, L.S.Sri: Mathematical Theory of Reliability, Affiliated East West Press Pvt. Ltd, 2009.</li> <li>R.K.:An Introduction of Fluid Dynamics Chapter XIII, Oxford and IBH Publishing Company, New Delhi, 1903.</li> </ul> | cshetra.      |
| Suggeste                                                                                                                         | d Continuous Evaluation Methods: External Evaluation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |               |
| Course                                                                                                                           | prerequisites: To study this course, a student must have had the subject Mathematics in PG degree.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               |
| ggested                                                                                                                          | equivalent online courses: There are online courses on the channels such as Swayam Prabha, and NPTEL. E-contents from different onli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ne libraires. |
| Further S                                                                                                                        | uggestions:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |               |
|                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |               |