Maa Shakumbhari University, Saharanpur

Syllabus of the Subject Biochemistry

For Four Year Undergraduate Program (FYUP)

(As per guidelines of Common Minimum Syllabus by U.P. Government according to National Education Policy-2020 amended with GO-2090/70-3-2024-09(01) Dated: 02-09-2024)

Jacker A

Members, Board of Studies (Biochemistry)

S. No.	Name	Designation	College/University	
1.	Prof. Garima Jain	Dean Science	D.A.V. (P.G). College, Muzaffarnagar	Eu
2.	Prof. Mukesh Chand	Convener	D.A.V. (P.G). College, Muzaffarnagar	and in
3.	Prof. Anju Panwar	Member	D.A.V.(P.G.) College, Muzaffarnagar	Auju
4.	Mr. Satyendra Kumar	Member	D.A.V.(P.G.) College, Muzaffarnagar	
5.	Prof. Hari Om Sharma	Member	C.C.R. Degree College, Muzaffarnagar	Sub
6.	Dr. Rachna Tyagi	Member	D.A.V.(P.G.) College, Muzaffarnagar	Rechter
7.	Prof. Nupur Chatterji	External expert	Meerut College, Meerut.	
8.	Prof R. K. Shukla	External expert	Gurukul Kangri University, Haridwar	

Year	Sem.	Course Code	Paper Title	Theory/ Practical	Credits		
1st	I		Fundamentals of Biochemistry	Theory	4		
	}		Fundamentals of Biochemistry Lab.	Practical	2		
			Cell Biology	Theory	4		
	}		Cell Biology Lab.	Practical	2		
			Minor Elective (Other faculty)	Theory	6		
	}		Vocational Skill Development course	Theory	3		
			Co-curricular Course	Theory	2		
		Total Credits:23					
	II		Proteins	Theory	4		
			Proteins Lab.	Practical	2		
			Human Physiology	Theory	4		
			Human Physiology Lab.	Practical	2		
			Vocational Skill Development course	Theory	3		
	1		Co-curricular Course	Theory	2		
			Total Credits:17				
			First Year Total credits: 40				

Semester-wise Titles of Papers

Year	Sem. Course Pape Code		Paper Title	Theory/ Practical	Credits
2nd	III		Enzymes and Enzymology	Theory	4
	Í		Enzymes and Enzymology Lab.	Practical	2
			Metabolism of Carbohydrates and Lipids	Theory	4
			Metabolism of Carbohydrates and Lipids	Practical	2
			Lab.		
		· · · · · ·	Minor Elective (Other Faculty)	Theory	6
			Vocational Skill Development course	Theory	3
			Co-curricular Course	Theory	2
			Total Credits:23		
	IV		Membranes Biology and Bioenergetics	Theory	4
			Membranes Biology and Bioenergetics Lab.	Practical	2
			Metabolism of Amino Acids and Nucleotides	Theory	4
			Metabolism of Amino Acids and Nucleotides Lab.	Practical	2
	ÍÍ		Co-curricular Course	Theory	2
			Research Project		3
			Total Credits:17		
			Second Year Total credits: 40		

from

~

n.` \sim

Jules,

Year	Sem.	Course	Paper Title	Theory/	Credits		
		Code		Practical			
3rd	V		Concepts in Genetics	Theory	4		
			Tools and Techniques in Biochemistry.	Theory	4		
			Genetics and Tools, Techniques in	Practical	2		
			Biochemistry Lab.	(·			
			Immunology	Theory	4		
			Biostatistics and Bioinformatics	Theory	4		
			Immunology, Biostatistics and	Practical	2		
			BioinformaticsLab.	[
		Total Credits:20 Basic Microbiology Theory 4					
	VI		Theory	4			
			Clinical Biochemistry	Theory	4		
			Microbiology and Clinical Biochemistry Lab.	Practical	2		
	[[Harmone Biochemistry	Theory	4		
			Molecular Basis of Human Diseases	Theory	4		
			Harmone Biochemistry and Molecular Basis	Practical	2		
			of Human Diseases Lab.				
			Third Year Total credits: 40				

Year	dear Sem. Course Code		Paper Title	Theory/ Practical	Credits	
4th	VII		Biophysical chemistry	Theory	4	
			Molecular Biology	Theory	4	
			Genetic Engineering	Theory	4	
			Plant Biochemistry	Theory	4	
			Practical	Practical	4	
			Total Credits:20		·	
	VIII	/III Analytical chemistry		Theory	4	
			Bioenergetics	Theory	4	
			Microbial Biochemistry	Theory	4	
			Research Methodology	Theory	4	
			Practical	Practical	4	
			Total Credits:20			
			Fourth Year Total credits: 40			

Jacher Augur

Halu

Progr	ramme/Class:Certificate Year: First; Semester: First					
Cour	Subject: Biochemistry se Code: Course Title:Fundamentals of Biochemistry					
Cours	se outcomes: After successful completion of the course, student will be able to					
•	Basic details of structure, function of carbohydrate molecules and its classific					
•	Details of structure, function and classification of amino acid &structural l	evels of				
	protein molecules					
٠	Structure and function offatty acids, storage and structural lipids, Nucleotid and RNA	le, DNA				
•	Basic details of Vitamin molecules and its classification					
<u>Cre</u> di						
	Marks: 100=75(UE)+25(CIE) Min. Passing Marks: As per University	norms				
Unit	Topics	Tota				
I	Basics of Biochemistry: History with special reference to contribution of					
	Indian biochemists. General idea about normality, molarity, molality,					
	percentage solutions, mole fraction. W/v and v/v solutions. Concept of pH					
	determinations using indicators, buffer solutions and their biological	of				
	importance. Water as universal solvent.					
Π	Amino acids and proteins: Structural features and classification, Physical	Lec				
	properties, optical properties (Stereoisomerism), Chemical properties of					
	amino acids, Uncommon amino acids and their function. Classification of					
	protein, structural organization as primary, secondary, tertiary and quaternary					
	structure of protein and characteristics of the peptide bond					
III	Carbohydrate: Monosaccharides - structure of aldoses and ketoses, Ring	1				
	structure of sugars, conformations of sugars, mutarotation, anomers, epimers	1				
	and enantiomers, Structure of biologically important sugar derivatives,					
	oxidation and reduction of sugars, Formation of disaccharides, reducing and					
	non-reducing disaccharide, Polysaccharides- homoand hetero-					
	polysaccharides, structural and storage polysaccharides.					
IV	Lipids: Building blocks of lipids - fatty acids, glycerol, ceramide, Storage					
	lipids - triacyl glycerol and waxes, Structural lipids in membranes -					
	glycerophospholipids, galactolipids and sulpholipids, sphingolipids and	1				
	sterols, Plant steroids.					
V	Nucleic acids: Nucleotides - structure and properties, Nucleic acid structure					
	- Watson-Crick model of DNA, Structure of major species of RNA - mRNA,					
	tRNA and rRNA, Nucleic acid chemistry - UV absorption, effect of acid and					
	alkali on DNA, Other functions of nucleotides - source of energy, component					
	of coenzymes, second messengers.					
VI	Vitamins: Structure and active forms of water soluble and fat-soluble	;				
	vitamins, Deficiency diseases and symptoms, hypervitaminosis, Sources,	,				
	dietary requirements.					
VII	Plant Hormones: Classification, structural features & functions in Plants,					
	Auxins, gibberellins, cytokinins, ethylene, and abscisic acid					
VIII	Animal Hormones: Classification, structural features & Functions of	<u>۲</u>				
Y 111						

S 8

 $\overline{}$

 $\widehat{}$

 \sim

 $\widehat{}$

 $\widehat{}$

 $\widehat{}$

 $\overline{}$

 $\widehat{}$

 $\overline{}$

 \sim

~

 \sim

-

Reduin Aug

	r pituitary, thyroid gland, adrenal gland,				
Pancreas, gonads					
Sugge	sted reading				
1.Lehninger, Albert, Cox, Michael M. Nelson,	DavidL(2017)Lehningerprinciplesofbiochemistry/				
NewYork:W.H.Freeman.					
2. Voet D.&Voet, J.G. (2011)Biochemistry.NewY	York: J. Wiley&Sons				
3. Biochemistry - LubertStryer Freeman Interna	ationalEdition.				
4. Biochemistry - Keshav Trehan Wiley Eastern	Publications				
5. Fundamentals of Biochemistry-J.L.Jain, S.Ch	and andCompany				
6. Voet&Voet: Biochemistry Vols 1 & 2: Wiley	(2004)				
7. Murray et al: Harper's Illustrated Biochemist	ry: McGraw Hill (2003) Elliott and Elliott				
Suggested Continuous Int	ernal Evaluation (CIE) methods				
Total marks: 25					
10 marks for Test					
10 marks for presentation along with assign	ment				
05 marks for Class interactions					

Programme/Class:	Year:	,	Semester:First		
Certificate Subj		ct: Biochemistry			
Course Code: C		urse Title: Fundame	entals of BiochemistryI	Lab.	
Credits: 2		Core: Compulsory			
Max. Marks: 100		Min. Passing Mar	ks: As per University 1	norms	
	Topi	cs		Tot	
Safety measures in laboratories				al	
 Preparation of normal and molar solutions 					
 Preparation of buffers 				No	
 Determination of pKa of ace 	tic acid a	and glycine			
Qualitative tests for carbohy	drates,	lipids, amino acids,	proteins and nucleic	of	
 acids Estimation of vitamin C 				hrs.	
	aide in a				
Perform spot test for amino a	acias in a	i given sample		60	

Programme/Class:	Year: First;	Semester:First	
Certificate	Subject:Biochemistry		
Course Code: Course Title: Cell Biology			
After successful comp	letion of the course, student will be	able to:	
 Learn structure 	and functions of cell, itsorganelles	and role of cytoskeleton.	
	emical composition of biological me	-	

Understand the cell cycle, mitosis, meiosis, and regulation mechanisms with

Jul

Sarling Auf

-0 -0 0 -0 0 $\widehat{}$ 0 \sim 0 0 -0 0 \sim \sim $\overline{}$ \sim $\overline{}$ --

~

1

 \sim

Mar	ts:4 Core: Compulsory	
	Marks: 100=75(UE)+25(CIE) Min. Passing Marks: As per University n	
Unit	Topics	Total
I	Introduction to cell biology: Prokaryotic (archaea and eubacteria) and	
	eukaryotic cell (animal and plant cells), cells as experimental models.	No.
II	Tools of cell biology: Light microscopy, phase contrast microscopy,	
	fluorescence microscopy, confocal microscopy, electron microscopy, FACS.	of
	Centrifugation for subcellular fractionation.	~
Ш	Structure of different cell organelles: Structure of nuclear envelope, nuclear	Lectu
	pore complex. ER structure. Organization of Golgi. Lysosome. Structure and	res
	functions of mitochondria, chloroplasts and peroxisomes. Zellweger	ĺ
137	syndrome.	60
IV	Protein trafficking: Selective transport of proteins to and from the nucleus.	00
	Regulation of nuclear protein import and export. Targeting proteins to ER,	
	smooth ER and lipid synthesis. Export of proteins and lipids from ER and	ļ
	into ER. Lipid and polysaccharide metabolism in Golgi. Protein sorting and	
	export from Golgi. Mechanism of vesicular transport, cargo selection, coat	ļ
	proteins and vesicle budding, vesicle fusion. Protein import and	
	mitochondrial assembly, protein export from mitochondrial matrix. Import and sorting of chloroplast proteins	
V	Cytoskeletal proteins: Structure and organization of actin filaments.	{
v	Treadmilling and role of ATP in microfilament polymerization, organization	ĺ
	of actin filaments. Non-muscle myosin. Intermediate filament proteins,	ł
	assembly and intracellular organization. Assembly, organization and	
	movement of cilia and flagella.	
VI	Cell division - Cell cycle, mitosis and meiosis, regulations of cell cycle and	{
¥ L	check points and proteins involved in cell cycle check points. Basics in cell	
	signaling- ligand molecules and receptors, G protein coupled receptors,	
	Tyrosine kinase receptor, apoptosis and necrosis.	
VII	Cell wall and extracellular matrix: Prokaryotic and eukaryotic cell wall, cell	1
	matrix proteins. Cell-matrix interactions and cell-cell interactions. Adherence	[
	junctions, tight junctions, gap junctions, desmosomes, hemidesmosomes,	
	focal adhesions and plasmodesmata.	
VIII	Cell cycle, cell death and cell renewal: Eukaryotic cell cycle, restriction	1
	point, and checkpoints. Cell division. Apoptosis and necrosis - brief outline.	
	Salient features of a transformed cell	
	Suggested Reading	
	olecular Biology of The Cell- B Albert, A Johnson, J Lewis, M Raff, K Robe	rts &]
	er.; G.S. Garland Science Taylor & Francis Group NY 10001-2299	
	Il and Molecular Biology- G. Karp.; John Wiley& Sons, Inc. NY	
	olecular Cell Biology, H. Lodish, A. B.P. Matsudaira C.A. Kaiser, M. Kriege	r, M. I
	L. Zipursky, J. Darnell.; W.H. Freeman & Com., NY.	
	e World of the Cell-Becker, W.M., Kleinsmith, L.J., Hardin. J. and Bertoni, G.	P. 2009
7th e	dition. Pearson Benjamin Cummings Publishing, San Francisco.	
	Suggested Continuous Internal Evaluation (CIE) mathada	
Total	Suggested Continuous Internal Evaluation (CIE) methods marks: 25	
	11101 No. 43	
	arks for Test10 marks for presentation along with assignment	

Jon

-

 $\overline{}$

 $\overline{}$

 \sim

 $\overline{}$

 \sim

~

 \sim

 \sim

~

 $\widehat{}$

 $\overline{}$

 $\overline{}$

 \sim

 $\widehat{}$

 $\widehat{}$

 $\widehat{}$

 $\widehat{}$

 \sim

 $\overline{}$

 $\widehat{}$

-

-

3

0

<u>_</u>

~

-

~

~

-

-

5

5

Migue

Roch

Programme/Class:	Year: First;	Semester:First			
Certificate	Subject:Biochemistry				
Course Code:	Course Title: Cell	Biology Lab.			
Credits: 2	Core: Compulso	ry			
Max. Marks: 100	Min. Passing M	arks: As per University norms			
	Topics	Tot			
Visualization of animal a	nd plant cell by methylene blu	e. al			
 Identification of different stages of mitosis in onion root tip. 					
 Identification of different 	 Identification of different stages of meiosis in grasshopper testis. 				
 Micrographs of different 	cell components (dry lab).	of			
 Sub-cellular fractionation 	n.				
 Visualization of nuclear 	fraction by acetocarmine stain.	hrs.			
 Staining and visualizatio 	n of mitochondria by Janus gre	en stain.			
		60			

Progr	amme/Class:	Year: First	;		Semester:Second	
Certifi	icate	Subject:Bi	ochen	nistry		
Cours	se Code:		Cour	se Title: Proteins		
After s	successful comple	etion of the c	ourse,	student will be able to:		
 Understand unique features and characteristics of proteins. 						
•	Understand the	relationship	betwee	en three-dimensional stru	cture of proteins an	d their
	functions	-				
Credi	ts:4		(Core: Compulsory		
Max.	Max. Marks: 100=75(UE)+25(CIE) Min. Passing Marks: As per University				As per University r	norms
Unit	Topics					Total
I	Introduction to	amino acids	, pept	ides and proteins: Amir	no acids and their	
ĺ	properties - hyd	rophobic, po	lar and	d charged. Biologically i	mportant peptides	No.
	- hormones, ant	ibiotics and	growt	h factors. Multimeric pr	oteins, conjugated	
	proteins and me	tallo proteins	s. Dive	ersity of function		of
II	Extraction of pr	oteins for do	wnstr	eam processing: Solubil	ization of proteins	
}				lular locations. Use of		Lect
	methods, homog	genization, u	ltrasor	nication, French press an	d centrifugation.	ures
III	Separation tec	chniques:	Ammo	nium sulphate fracti	onation, solvent	
	molecular siev	e chromato	graphy	hilization. Ionexchange , hydrophobic interact graphy, HPLC and FPL	ion/reverse phase	60

wh Š

(Lehr

г———		
IV	Characterization of proteins: Determination of purity, molecular weight,	
{	extinction coefficient and sedimentation coefficient, IEF, SDS-PAGE and 2-	
	D electrophoresis.	
V	Covalent structure of proteins: Organization of protein structure into primary,	
Í	secondary, tertiary and quaternary structures. N-terminal and C-terminal	
	amino acid analysis. Sequencing techniques - Edman degradation.	
1	Generation of overlap peptides using different enzymes and chemical	
1	reagents. Disulfide bonds and their location. Mass spectrometric analysis,	
	tandem MS. Solid phase peptide synthesis	
VI	Three dimensional structures of proteins: Nature of stabilizing bonds -	
	covalent and non-covalent. Importance of primary structure in folding. The	
ł	peptide bond - bond lengths and configuration. Dihedral angles psi and phi.	
	Helices, sheets and turns. Ramachandran map. Techniques used in studying	
{	3-D structures - X-ray diffraction and NMR. Motifs and domains. Tertiary	
VII	and quaternary structures. Structures of myoglobin and haemoglobin Protein folding and conformational diseases No. of Hours: 4 Denaturation	
Г V П	and renaturation of Ribonuclease A. Introduction to thermodynamics of	
	folding and molten globule. Assisted folding by molecular chaperones,	
Í	chaperonins and PDI. Defects in protein folding. Diseases –Alzheimer's and	
[Prion based.	
VIII	Myoglobin and haemoglobin. Antibody structure and binding to antigens.	
	ATP activated actin - myosin contractions. Membrane proteins: Integral and	
}	membrane associated proteins. Hydropathy plots to predict transmembrane	
	domains. Significance of membrane proteins - bacteriorhodopsin	
SUG	GESTED READINGS	
I. Le	hninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M	I., W.H.
1	ian and Company (New York)	
	ysical Biochemistry (2009) 2nd ed., Sheehan, D., Wiley-Blackwell (West Susses	
	ne Tools of Biochemistry (1977; Reprint 2011) Cooper, T.G., Wiley India Pr	vt. Ltđ.
(New	Delhi).	
	Suggested Continuous Internal Evaluation (CIE) methods	
	marks: 25	
	urks for Test	
	urks for presentation along with assignment urks for Class interactions	
05 ma		

Programme/Class: Certificate	Year: First; Subject:Biochemistry	Semester: Second
Course Code:	Course Title: Pi	roteins Lab.
Credits: 2	Core: Compulsory	
Max. Marks: 100	Min. Passing Mar	ks: As per University norms

Jen A

.

Levelor Augu

Topics	Total
	No.
 Estimation of proteins using UV absorbance and Biuret 	Of
method.	Hrs.
 Microassay of proteins using Lowry/Bradford method. 	
• Isoelectric pH of casein.	60
• Ammonium sulphate fractionation of serum proteins.	
• Separation of albumin from serum using anion-exchange	
chromatography.	
 SDS-PAGE analysis of protein 	

Progr	amme/Class:Certificate	Year:	First;	Semester:Second	
		Subje	ct:Biochemistry		
Cours	se Code:	Cou	rse Title:Human P	hysiology	
Afters	successful completion of the	e course	, student will be ab	le to:	
•	Understand the Mechanism	n of dig	estion & absorption	n, Composition of blood a	nd
	functions of heart				
•	Understand the physiology	of kidr	ney and reproduction	n.	
•	Understand the mechanism				
Credi	ts:4		Core: Compulsory		
Max.	Marks: 100=75(UE)+25(C	IE)	Min. Passing M	larks: As per University r	orms
Unit	······································		Topics		Total
I	Homeostasis and the organ	nization	n of body fluid com	partments: Intracellular,	
	extracellular and interstit	ial fluic	d. Homeostasis, co	ontrol system and their	No.
	components. Plasma as an	extrace	ellular fluid, RBC, i	molecular mechanism of	
	blood coagulation, role	of vitar	min K in coagula	tion, anticoagulant and	of
	fibrinolytic systems. Anen	nia, poly	ycythemia, haemop	hilia and thrombosis	

ð

Lasting

Nº-

II	Cardiovascular physiology: Pressure, flow and resistance. Anatomy of heart. Physiology of the cardiac muscle, automacity of the cardiac muscle	Lect ures
	contraction, excitation contraction coupling, relationship between cardiac	
1	cycle, heart sound, ventricular volumes and the ECG, control of cardiac	~
	function and output. The arterial system, venous system, the microcirculation	60
}	and mechanics of capillary fluid exchange. Control of blood flow to the tissues. Portal circulations. Arterial pressure and its regulation. Hypertension,	
	congestive heart disease, atherosclerosis and myocardial infarction.	
III	Respiration: Organization of the pulmonary system. Mechanism of	
	respiration, pulmonary ventilation and related volumes, pulmonary	
	circulation. Principles of gas exchange and transport. Regulation of	
	respiration. Pulmonary oedema and regulation of pleural fluid. Hypoxia,	
	hypercapnea, pulmonary distress, emphysema, ARDS.	
IV	Renal physiology: Anatomy of the kidney and the nephron. Regulation of	
	renal blood flow. Cell biology of the Bowmans' capsule. Physiology of	
	glomerular filtration and GFR. Tubular processing of the glomerular filtrate.	
	Micturition reflex and voluntary control of micturition. Regulation of ECF	
ĺ	electrolyte and water content, blood volume and long-term blood pressure. Blood buffer systems, renal and pulmonary control of blood pH, renal	
	clearance. Assessment of kidney function. Acidosis and alkalosis.	
1	Glomerular nephritis, renal failure, dialysis and diuretics.	
V	Gastrointestinal and hepatic physiology: Histology of the gastrointestinal	
ļ	tract. Propulsion and motility of food and digested material. Enteric reflexes,	
	secretory functions of the gastrointestinal tract, digestion and absorption of	
]	macro and micronutrients. Peptic ulcer, Sprue, celiac disease, IBD,	
	regurgitation, diarrhoea and constipation. Anatomy of the hepatic lobule and	
	blood flow into the liver. Formation and secretion of bile. enterohepatic	
	cycle, reticuloendothelial system, metabolic importance of liver. Liver	
VI	function tests. Jaundice, liver cirrhosis and fatty liver Musculosketetal system: Bone structure and formation. Physiology of	
	muscle contraction in striated and non-striated muscle.	
VII	Reproductive physiology: Sex determination and differentiation.	
	Development of female and male genital tracts. Spermatogenesis, Ovarian	
	function and its control. Fertilization and implantation. Placenta as a feto- maternal unit.	
VIII	Neurochemistry and neurophysiology: Central Nervous system. Peripheral	
	Nervous system. Blood brain barrier and CSF. Membrane potentials.	
	Synaptic transmission. Neurotransmitters. Sensory receptors and neural	(
	pathways. Somatic sensation, EEG, sleep, coma, learning and memory.	
	Suggested reading	
1	nder's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, I	<u>қ</u> .Т.,
	raw Hill International Publications (New York)	٨
	rper's Biochemistry (2012) 29th ed., Murray, R.K., Granner, D.K., Mayes and P. /ell, V.W., Lange Medical Books/McGraw Hill	<i>A.</i> ,
	tbook of Medical Physiology (2011) 10th ed., Guyton, A.C. and Hall, J.E., Reed	1
1	iers India Pvt. Ltd. (New Delhi).	~
	ndamental of Anatomy and Physiology (2009), 8th ed., Martini, F.H. and Nath, J	.L.,
	on Publications (San Francisco),	
	Suggested Continuous Internal Evaluation (CIE) methods	
[Total	marks: 25	

Jul

-

-

 $\widehat{}$

 $\widehat{}$

D

-

-

5

2

-

Saelm

Aufr

Programme/Class: Certificate	Year: Fin	rst;	Semester:Secon	d
	Subject:	Biochemistry		
Course Code:		Course Title: Hu	man PhysiologyLa	ıb.
Credits: 2	Core: (Compulsory		
Max. Marks: 100	Min. P	assing Marks: As	per University nor	ms
	Topics			Total
 Hematology. 				
 RBC and WBC count 	ting			No.
 Differential leucocyte 	e count.			
 Clotting time. 				of
 Estimation of haemoglobin. 				
 Separation of plasma protein 	S.			hrs.
 Determination of total iron b 	inding capa	acity.		
 Pulmonary function tests, sp. 	irometry an	d measurement of	blood pressure.	60
 Separation of isoenzymes of 	LDH by el	ectrophoresis.		60
 Histology of connective tissu 	ue, liver and	l/ brain permanent	slides.	

Progr	amme/Class:	Year: Secon	ıd		Semester: Third	
Diploi	na	Subject:Bio	chemi	istry		
Cours	e Code:		Cours	e Title:Enzymes		
After :	successful compl	etion of the co	urse, s	student will be able to	:	
•	Understand clas	sification and	specif	ficity of enzymes.		
٠	Learn mechanis	m of enzyme	action	and enzyme kinetics.		
٠	Explore various	s industrial app	licatio	ons of enzymes.		
Credi	ts:4		C	ore: Compulsory		
Max.	Marks: 100=75(UE)+25(CIE)		Min. Passing Mark	s: As per University 1	norms
Unit	Topics					Total
Ι	Introduction to	ofactor and	prostl	of enzymes - prote hetic group, apoenz		No.
ΙĮ	Features of e reactions. colli	nzyme cataly sion theory, a	sis: F activat	Factors affecting the tion energy and transition of the transition of transition of the transition of the transition of the transition of transition of the transition of transitio	sition state theory,	of Lectu

Jul

Caelur

	and specificity of enzymes (concept of active site), Fischer's lock and key	res
	hypothesis, Koshland's induced fit hypothesis.	{
III	Enzyme kinetics: Relationship between initial velocity and substrate concentration, steady state kinetics, equilibrium constant – mono-substrate reactions. Michaelis-Menten equation, Lineweaver-Burk plot, Eadie-Hofstee and Hanes plot. Km and Vmax, Kcat and turnover number. Effect of pH, temperature and metal ions on the activity of enzyme.	60
IV	Enzyme inhibition: Reversible inhibition (competitive, uncompetitive, non- competitive, mixed and substrate). Mechanism based inhibitors - antibiotics as inhibitors.	
V	Mechanism of action of enzymes: General features - proximity and orientation, strain and distortion, acid base and covalent catalysis (chymotrypsin, lysozyme). Metal activated enzymes and metalloenzymes, transition state analogues.	
VI	Regulation of enzyme activity: Control of activities of single enzymes (end product inhibition) and metabolic pathways, feedback inhibition (aspartate transcarbamoylase), reversible covalent modification phosphorylation (glycogen phosphorylase). Proteolytic cleavage- zymogen. Multienzyme complex as regulatory enzymes. Occurrence and isolation, phylogenetic distribution and properties (pyruvate dehydrogenase, fatty acyl synthase) Isoenzymes - properties and physiological significance (lactate dehydrogenase).	
VII	Involvement of coenzymes in enzyme catalysed reactions: TPP, FAD, NAD, pyridoxal phosphate, biotin, coenzyme A, tetrahydrofolate, lipoic acid.	
VIII	Applications of enzymes: Application of enzymes in diagnostics (SGPT, SGOT, creatine kinase, alkaline and acid phosphatases), enzyme immunoassay (HRPO), enzyme therapy (Streptokinase). Immobilized enzymes.	
	Suggested Reading	·
Freen 2. Bic Ltd. (3. Fu	ninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., nan and Company (New York) ochemistry (2011) 4th ed., Donald, V. and Judith G.V., John Wiley & Sons Asia I New Jersey) ndamentals of Enzymology (1999) 3rd ed., Nicholas C.P. and Lewis S., Oxford ersity Press Inc. (New York)	
	Suggested Continuous Internal Evaluation (CIE) methods	
	marks: 25	
	arks for Test	
	arks for presentation along with assignment arks for Class interactions	
05 11		

З

 $\overline{}$

((((

1

0

0

 $\widehat{}$

Auto

factors

Programme/Class: Diploma	Voor	Second	Semester: Third	
r rogramme/Class. Dipionia		ct:Biochemistry	Semester: Inita	
Course Code:		Course Title: Enzym	nes Lab.	
Credits: 2		Core: Compulsory		
Max. Marks: 100		Min. Passing Mar	ks: As per University	norms
	Topi	cs		Tot
	î			al
Partial purification of acid phAssay of enzyme activity and	specifi		U U	No
 Effect of pH on enzyme activ Determination of Km and Vm 	nax usin	*		of
 Enzyme inhibition - calculation Continuous assay of lactate do Coupled assay of glucose-6-p 	ehydrog	genase.	bition.	hrs.
				60

Progra	amme/Class:	Year: Seco	nd;		Semester: Third	
Diplor	na	Subject:Bi	ochem	uistry		
Cours	e Code:		Cour	se Title:Metabolism of (Carbohydrates and	Lipids
After s	uccessful comp	letion of the c	ourse,	student will be able to:		
•	Understand the	chemistry of	carbol	hydrate, fat, fatty acid, et	tc.	
•	know aboutbio	synthesis of 1	he mo	lecules, chemistry of na	tural cycles of citr	ic acid,
	etc	-				
Credit	ts:4			Core: Compulsory		
Max.	Marks: 100=75	(UE)+25(CIE)	Min. Passing Marks:	As per University	norms
Unit				Topics		Total
I	Basic design of	metabolism:	Autot	rophs, heterotrophs, meta	abolic pathways,]

Lor

Rochur

Jur *C* .

	catabolism, anabolism, ATP as energy currency, reducing power of the cell.	No.
II	Glycolysis: Glycolysis - a universal pathway, reactions of glycolysis,	110.
	fermentation, fates of pyruvate, feeder pathways for glycolysis,	of
	galactosemia.	
	Gluconeogenesis and pentose phosphate pathway: Synthesis of glucose from	Lect
	non-carbohydrate sources, reciprocal regulation of glycolysis and	ures
	gluconeogenesis, pentose phosphate pathway and its importance.	
III	Glycogen metabolism: Glycogenesis and glycogenolysis, regulation of	1
	glycogen metabolism, glycogen storage diseases. Citric acid cycle:	60
	Production of acetyl CoA, reactions of citric acid cycle, anaplerotic	
	reactions, amphibolic role, regulation of citric acid cycle, glyoxalate	
	pathway, coordinated regulation of glyoxalate and citric acid pathways.	
IV	Synthesis of carbohydrates: Calvin cycle, regulation of calvin cycle,	
	regulated synthesis of starch and sucrose, photorespiration, C4 and CAM	
	pathways, synthesis of cell wall polysaccharides, integration of carbohydrate	
	metabolism in plant cell.	
V	Fatty acid oxidation: Digestion, mobilisation and transport of cholesterol and	1
	triacyl glycerols, fatty acid transport to mitochondria, β oxidation of	}
	saturated, unsaturated, odd and even numbered and branched chain fatty	
	acids, regulation of fatty acid oxidation, peroxisomal oxidation, ω oxidation,	}
	ketone bodies metabolism, ketoacidosis.	
VI	Fatty acid synthesis: Fatty acid synthase complex. Synthesis of saturated,	
	unsaturated, odd and even chain fatty acids and regulation.	
VII	Biosynthesis of eicosanoids, cholesterol, steroids and isoprenoids: Synthesis	
	of prostagladins, leukotrienes and thromboxanes. Synthesis of cholesterol,	
	regulation of cholesterol synthesis. Synthesis of steroids and isoprenoids.	
VIII	Biosynthesis of membrane lipids: Synthesis of membrane phospholipids in	
	prokaryotes and eukaryotes, respiratory distress syndrome, biosynthesis of	
	triacylglycerol, biosynthesis of plasmalogens, sphingolipids and glycolipids,	
	lipid storage diseases.	
	Suggested reading	
	hninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M.	., W.H.
Freer	nan and Company (New York)	
	xtbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M.,	John
-	y & Sons, Inc. (New Jersey)	
	ochemistry (2012) 7th ed., Berg, J.M., Tymoczko, J.L. and Stryer L., W.H. Freen	nan and
Com	pany (New York)	
-	Suggested Continuous Internal Evaluation (CIE) methods	
	marks: 25	
	arks for Test	
	arks for presentation along with assignment	
05 m	arks for Class interactions	

Subject:Biochemistry

Jum

Locher

Course Code:	Course Title: Metabolism of C	arbohydrates and
	LipidsLab.	
Credits: 2	Core: Compulsory	
Max. Marks: 100	Min. Passing Marks: As per U.	niversity norms
Topi	ics	Total
Estimation of blood glucose.		No
 Sugar fermentation of microorga 		
 Assay of salivary amylase, 		of
• Isolation of lecithin, identificatio	n by TLC, and its estimation.	
 Isolation of cholesterol from egg yolk and its estimation 		Ling
-38	,	Hrs.
		60
		[

Programme/Class:	Year: Second		Semester:Fourth			
Diploma	Subject:Biochemistry					
Course Code:	urse Code: Course Title:Membranes Biology and Bioenergetics					
After successful cor	pletion of the course,	student will be able to:				
 have idea on 	different biological m	embranes and their bioch	nemical composition	n,		
mechanism (f transport of differen	t chemical and biological	species, their ener	getics,		
 Understand t 	he basics of bioenerge	tics and how the principl	es of bioenergetics	hold		
good in biolo	gical systems.	~ ^	0			
Credits:4	(Core: Compulsory				
Max. Marks: 100=	75(UE)+25(CIE)	Min. Passing Marks:	As per University r	orms		
Unit		Topics		Total		
I Introduction	to bio-membranes	s: Composition of I	biomembranes -			
		l and subcellular mem		No.		
	-	saic model with exp	-			
		somes as model membra		of		
	J	ic structures of amphiph				
		oilayers. CMC, critical p		Lect		
		micro domains in memb		ures		
	oid rafts, caveolae	and tight junctions.	RBC membrane)		
architecture.						
		sverse and rotational mo		60		
proteins. Te	chniques used to stu	dy membrane dynamics	- FRAP, INBS			
				~ ~ '		
•						
\cap		1		(N "		
		Rech	Norma	12m		
				1		

Jun

Rechar

labeling etc. Transition studies of lipid bilayer, transition temperature. Membrane fluidity, factors affecting membrane fluidity. IV Membrane transport: Thermodynamics of transport. Simple diffusion and facilitated diffusion. Passive transport - glucose transporter, anion transporter and porins. Primary active transporters - P type ATPases, V type ATPases, F type ATPases. Secondary active transporters - lactose permease, Na+ glucose symporter. ABC family of transporters - MDR, CFTR. Group translocation. Ion channels - voltage-gated ion channels (Na+ /K+ voltagegated channel), ligand-gated ion channels (acetyl choline receptor), aquaporins, bacteriorhodopsin. Ionophores - valinomycin, gramicidin. v Vesicular transport and membrane fusion: Types of vesicle transport and their function - clathrin, COP I and COP II coated vesicles. Molecular mechanism of vesicular transport. Membrane fusion. Receptor mediated endocytosis of transferrin VĪ Introduction to bioenergetics: Laws of thermodynamics, state functions, equilibrium constant, coupled reactions, energy charge, ATP cycle, phosphorylation potential, phosphoryl group transfers. Chemical basis of high standard energy of hydrolysis of ATP, other phosphorylated compounds and thioesters. Redox reactions, standard redox potentials and Nernst equation. Universal electron carriers. VII Oxidative phosphorylation: Mitochondria. Electron transport chain - its organization and function. Inhibitors of ETC and uncouplers. Peter Mitchell's chemiosmotic hypothesis. Proton motive force. Fo F1ATP synthase, structure and mechanism of ATP synthesis. Metabolite transporters in mitochondria. Regulation of oxidative phosphorylation. ROS production and antioxidant mechanisms. Thermogenesis. Alternative respiratory pathways in plants. VIII Photophosphorylation: General features of photophosphorylation, historical background, Hills reaction, photosynthetic pigments, light harvesting systems of plants and microbes and resonance energy transfer. Bacterial photophosphorylation in purple bacteria Green-sulfur bacteria and Halobacterium salinarum. Photophosphorylation in plants - structure of chloroplast, molecular architecture of Photosystem I and Photosystem II, Zscheme of photosynthetic electron flow, oxygen evolving complex and action of herbicides. Cyclic photophosphorylation and its significance. Photo inhibition. Evolution of oxygenic photosynthesis. Suggested reading 1. Lehninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M., W.H. Freeman and Company (New York) 2. Molecular Cell Biology (2013) 7th ed., Lodish, H., Berk, A., Kaiser, C.A., Krieger, M., Bretscher, A., Ploegh, H., Amon, A. and Scott, M.P., W.H. Freeman & Company (New York) 3. Biochemistry (2010) 4th ed., Garret, R. H. and Grisham, C.M., Cengage Learning (Boston). 4. Principles of Biochemistry (2008) 3rd ed., Voet, D.J., Voet, J.G. and Pratt, C.W., John Wiley & Sons, Inc. (New York) Suggested Continuous Internal Evaluation (CIE) methods Total marks: 25 10 marks for Test 10 marks for presentation along with assignment 05 marks for Class interactions

for

Jarden

Programme/Class: Diploma	Year: Se Subject:	econd Biochemistry	Semester:F	ourth
Course Code:		Course Title: Membranes Biology and Bioenergetics Lab.		ogy and
Credits: 2		Core: Compulsory		
Max. Marks: 100=75(UE)+25(CIE)		Min. Passing Man norms	ks: As per Un	niversity
Т	Topics			Total
 Effect of lipid composition or Determination of CMC of determination of CMC of determination of CMC of determination and photosynthetic Separation of photosynthetic Isolation of photosynthetic O2 evo Isolation of chloroplast from and photosynthetic activity. 	tergents. nd to study pigments 1 m liver and lution in h	y the effect of deters by TLC. d assay of marker er ydrilla plant.	gents on nzyme SDH.	No. of Hrs. 60

Programme/Class:	Year: Seco	ond	Semester:Fourth
Diploma	Subject:B	iochemistry	
Course Code:		Course Title:Metabolism of	Amino Acids and
		Nucleotides	
After successful comple	etion of the c	course, student will be able to:	
1	· · · ·	, • ,	

- learn regarding amino acid, protein, etc.
- understandseveral chemical and biochemical aspects of amino acids/proteins and nucleotides.

Credi	ts:4	Core: Compulsory	
Max.	Max. Marks: 100=75(UE)+25(CIE) Min. Passing Marks: As per University n		orms
Unit		Topics	Total
I	ammonia into biomolecules. Met	bolism: Nitrogen cycle, incorporation of abolic fates of amino groups. Digestion and Protein calorie malnutrition - Kwashiorkar	
	and Marasmus. Nitrogen bala	ance, transamination, role_of pyridoxal	of

ha

Levelan

		r
	phosphate, glucose-alanine cycle, Kreb's bicycle, urea cycle and inherited defects of urea cycle.	Lect
II	Catabolism of amino acids: Catabolic pathways of individual amino acids. Glucogenic and ketogenic amino acids. Metabolism of one carbon units.	ures
	Disorders of amino acids metabolism, phenylketonuria, alkaptonuria, maple syrup urine disease, methylmalonic acidemia (MMA), homocystinuria and	60
	Hartnup's disease.	00
III	Biosynthesis of amino acids: Overview of amino acid synthesis. Biosynthesis of non-essential amino acids and its regulation.	
IV	Precursor functions of amino acids: Biosynthesis of creatine and creatinine, polyamines (putresine, spermine, spermidine), catecholamines (dopamine, epinephrine, norepinephrine) and neurotransmitters (serotonin, GABA).	
v	Porphyrin biosynthesis, catabolism and disorders of porphyrin metabolism. Biosynthesis of purine and pyrimidine nucleotides: De novo synthesis of purine and pyrimidine nucleotides, regulation and salvage pathways.	
VI	Deoxyribonucleotides and synthesis of nucleotide triphosphate: Biosynthesis of deoxyribonucleotides and its regulation, conversion to triphosphates, biosynthesis of coenzyme nucleotides	
VII	Degradation of purine and pyrimidine nucleotides: Digestion of nucleic acids, degradation of purine and pyrimidine nucleotides. Inhibitors of nucleotide metabolism. Disorders of purine and pyrimidine metabolism – Lesch-Nyhan syndrome, Gout, SCID, adenosine deaminase deficiency.	
VIII	Integration of metabolism: Integration of metabolic pathways (carbohydrate, lipid and amino acid metabolic pathways), tissue specific metabolism (brain, muscle, and liver).	
	Suggested reading	
	uninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M	., W.H.
	nan and Company (New York)	
	ktbook of Biochemistry with Clinical Correlations (2011) 7th ed., Devlin, T.M.	I., John
Wiley	& Sons, Inc. (New York)	
	Suggested Continuous Internal Evaluation (CIE) methods	
	marks: 25	
	urks for Test	
	arks for presentation along with assignment	
05 m	arks for Class interactions	

Programme/Class: Diploma	Year: Second Subject:Biochemistry	Semester:Fourth
Course Code:	Course Title: N and Nucleotides	Ietabolism of Amino Acids Lab.
Credits: 2	Core: Compulse	ry
Max. Marks: 100=75(UE)+25(CIE	3) Min. Passing M	arks: As per University

Juen

-

 \sim

~

 $\overline{}$

~

-

1

5

-

-

Rachur

y Aufr

norms	
Topics	Total
Assay of serum transaminases – SGOT and SGPT.	
Estimation of serum urea.	No.
Estimation of serum uric acid	
Estimation of serum creatinine.	of
	Hrs.
	1
	60
	ſ
	Í

Programme/Class: Year: Third; Semester: Fifth		Semester: Fifth				
Degre	Degree Subject:Biochemistry					
Cours	se Code:		Course Title	Concepts in Ger	netics	
After	completion of the	course the s	tudents will b	e able to		
•	Describe fundan	nentals of ge	netics and un	derstand relations	hip between pheno	type
	and genotype in	human gene	tic traits;			
•	Understand Chro	omosome ar	d genomic or	ganization.		
•	Describe the bas	ics of genet	ic mapping.	-		
Credi				ompulsory		
Max.	Marks: 100=75(1	JE)+25(CIE			As per University 1	norms
Unit	· · · · · · · · · · · · · · · · · · ·	Topics			Total	
I	Introduction to	model o	organisms an	d Mendelism:M	lodel organisms:]
					la melanogaster,	No.
	1	<u> </u>	Danio rerio	and Arabidopsis	thaliana, Basic	}
	principles of her	-				of
					of heredity: Laws	
					d testing genetic	Lect
				lism -Sutton and	Boveri hypothesis	ures
	with experiment					
Π					ction - dominance	
					s. Pleiotropy gene	60
	^		^		ween gene(s) and	
	environment. Pe	netrance and	a expressivity,	, norm of reaction	and phenocopy.	

J

Calm

n'i

ш	Gene: Complementation test, limitations of cis-trans test, intragenic	
{	complementation, rII locus of phage T4 and concept of cistron. Genetics of	
{	bacteria and viruses: Mechanism of genetic exchange - conjugation, transformation and transduction. Gene mapping in bacteria.	
IV		
1 V	Linkage, crossing over and mapping: Linkage and crossing over, genetic mapping in eukaryotes, centromere mapping with ordered tetrads,	
} `	cytogenetic mapping with deletions and duplications in Drosophila, detection	
ł	of linked loci by pedigree analysis in humans and somatic cell hybridization	
ł	for positioning genes on chromosomes.	
V	Genetic control of development and sex determination: Model organism for	
j	genetic analysis, Drosophila development, maternal effect genes,	
	morphogens and zygotic gene activity in development, sex chromosomes and	
ĺ	sex determination, dosage compensation of X-linked genes.	
	Human pedigree analysis: Pedigree conventions, characteristics of dominant	
VI	and recessive inheritance. Applications of pedigree analysis.	
	Organelle heredity and epigenetics: Extra nuclear inheritance, tests for organelle heredity and maternal effect, epigenetic mechanisms of	
	transcriptional regulation & genomic imprinting.	
VII	Chromosomal aberrations: Variations in chromosome number- monosomy	
	and trisomy of sex and autosomes. Variations in chromosome structure -	
	inversions, deletions, duplications and translocations.	
VIII	Inheritance of complex traits & population genetics: Inheritance of complex	
	trait, analysis of quantitative traits, narrow and broad sense heritability,	
	quantitative trait loci (QTL) and their identification. Hardy-Weinberg law,	
	predicting allele and genotype frequencies and exceptions to Hardy-	
	Weinberg principle.	
1	Suggested reading Genetics (2012) 6th ed., Snustad, D.P. and Simmons, M.J., John Wiley & Sons.	
1	(Singapore)	
2.	Genetics - A Conceptual Approach (2012), 4th ed., Pierce, B.A., W.H. Freeman &	
	Co. (New York)	
3.	An Introduction to Genetic Analysis (2010), 10th ed., Griffiths, A.J.F, Wessler, S. F	٢,
	Carroll, S. B. and Doebley, J., W.H. Freeman & Company (New York)	
	Suggested Continuous Internal Evaluation (CIE) methods	
Total	marks: 25	
J	arks for Test	
	arks for presentation along with assignment	
05 m	arks for Class interactions	

Programme/Class:	Year: Third		Semester:Fifth
Degree	Subject:Biochemistry		
Course Code:		Course Title: Tools and Techr	iques in Biochemistry.
After successful completion of the course, student will be able to:			

Jun

Leelur.

Ø

- learn about appropriate laboratory tools and practices.
- utilize the theoretical, technical and analytical skills to tackle issues and problems in the field of biochemistry.

learn about the principle and application of cell culture and microscopic techniques.

Credit		
7	Marks: 100=75(UE)+25(CIE) Min. Passing Marks: As per University	
Unit_	Topics	Tota
[]	Safety practices in the laboratory, Writing and maintaining lab reports,	
	Introduction to various laboratory reagents: chemicals and liquid reagents,	No.
	distilled/ RO water, Weighing of chemicals on an electronic balance	
II	Preparation and storage of solutions, labelling of prepared solutions,	of
	dilutions of solutions. Introduction and handling of acids and bases, Buffers,	
ł	preparation of buffers using Handerson-Hasselbach equation, Hands-on	Lect
	training at pH meter. Preparation of a buffer with given pH and molarity.	ures
	Hands-on training for micropipette.	-
III	Microscopy Principle of light microscopy, phase contrast microscopy,	6
ĺ	fluorescence microscopy. Permanent and temporary slide preparation,	60
	histology and staining.	-
IV	Separation techniques: Preparation of sample, different methods of cell lysis,	
	salting out, dialysis. Principle and the factors affecting centrifugation	
	Svedberg coefficient, types of rotors, principle and applications of	
	differential and density gradient centrifugation	4
V	Purification techniques: Classification of chromatographic techniques,	}
	principle and applications: Paper, thin layer, molecular sieve, ion exchange,	
	and affinity chromatography	1
VI	Electrophoretic techniques: Principle of electrophoresis, various types of	
	electrophoresis: Polyacrylamide gel (native), SDS PAGE and agarose gel,	
	staining procedures for protein and nucleic acids.	-
VII	Spectroscopic techniques: Introduction to electromagnetic spectrum,	
	Principle and working of UV-visible absorption spectrophotometer, single &	1
	double beam spectrophotometer, Beer's & Lambert's law, application of UV-	1
	visible spectrophotometer in biology.	
VIII	Microbiological/Cell culture techniques Types of media, selective and	
	enrichment media, sterilization methods, bacterial culturing, CFU	
	determination, growth curves, Generation/doubling times, cell counting,	1
	viable and nonviable. Growth and maintenance of cultures, biosafety	
0	cabinets, CO2incubator. Staining procedures, plating and microtomy	
$\phi \phi$	sted Readings	
1.	Wilson, K. & Walker J. (2010). Principles and Techniques of Biochemis	ary a
2	Molecular Biology, (7th ed.), Cambridge University Press.	
2.	Boyer, R. F. (2012). Biochemistry Laboratory: Modern Theory and Techniqu	ies, (6
2	ed.), Boston, Mass: Prentice Hall.	1) Ta
3.	Plummer, D. T. (1998). An Introduction to Practical Biochemistry (Yd ec	1.), 18
	McGraw Hill Education Pvt. Ltd. (New Delhi). Cooper, T.G. (2011). The Tools of Biochemistry (2nd · ed.), Wiley-Inte	rogian
А		I SULPERI
4.	Publication (New Delhi);	1301011

10 marks for Test

Levelmin ----

-

~

~

~

 \sim

<u>_</u>

Ċ

-

0

0

-

0

~

-

~

1

-

1

(--)

.

Program/Class: Degree	Year: Third	Semester: Fif	th
	Subject:Biochemistry		
Course Code:	r	ticsand Tools and Tech	niques in
	Biochemistry. Lab.		
Credits: 2	Core: Compulso		
Max. Marks: 100		arks: As per Universit	
	<u>Topics</u>		Total
 Squash preparation of sa 	livary glands of Dip	teran larva to	
observe polytene chrom	osomes		No.
• Induction of polyploidy	in onion roots.		
• Smear technique to dem	onstrate sex chromat	in in buccal	
epithelial cells			of
 Monohybrid crosses in I 	Drosophila for studvi	ng autosomal	
and sex-linked inheritan			Hrs.
 PTC testing in a populat 		fallele and	
genotype frequencies.		anolo and	
	an lease terms and nod	inners (dm. lab)	60
• Study of abnormal huma	an karyotype and ped	igrees (dry lab)	
Conjugation in bacteria	<u> </u>	-	
• Preparation of cell free e		1	
 Separation and identific 	ation of amino acid a	cids by thin layer	
chromatography.			
Separation of molecules	by gel filtration chro	matography.	
• Determination of absorp	otion maxima (Amax).	
Calculate molar extincti			
 Demonstration of PAGE 		• ·	
	and Aguitose gol olo		

Juen

 \langle

Sacher

	amme/Class:	Year: Thir	,		Semester: Fifth	
Degre		Subject:B	iochemistry			
	e Code:		Course Title:In			
Alter c	ompletion of the co					
•			oles of immune sy			
•			igen and antibod	, U	en	
•			ques to identify a	•		
٠			gy and allergic d	iseases		
•	Understand the	mportance	of vaccines			
Credi			Core: Com	<u> </u>		
	Marks: 100=75(1	JE)+25(CIE	E) Min. Pa	<u>ssing Marks:</u>	As per University r	orms
Unit			Topics			Tota
I					lls of the immune	
				-	tissues (MALT).	No.
					ole molecules and	
					ween innate and	of
					kines, leukocyte	-
					nd haptens, factors	Lec
 11			B and T cell epit		unoglobulins (Ig),	ures
11					ants on Ig and Ig	
					zation of Ig locus,	60
					iys of antibody	
	diversification.	v regior		ingement, we	iys of antibody	
III		B lymnh	ocyte: Antigen	independent	phase of B cell	1
					and T-independent	
			ution of B cell po		and I much ondere	
					l receptor, and co-	[
	receptor, T cell	developmer	nt, generation of	receptor diver	sity, selection and	}
	differentiation.					
IV					alternate and MB	
	lectin pathway		~	s of comple	ement activation,	[
	regulation and c					_
V					organization and	
)	F			C class I and class	
	_ <u> </u>	kage disequ	illibrium, pathwa	ays of antige	n processing and	
N/T	presentation.	antotorio	anongos: Concret	[proportion o	f offector T colle	-
VI					f effector T cells, ntibody dependent	(
	cellular cytotoxi	· · ·	,	T Cons and a	anoody dependent	
VII				ty: Organ ene	cific and systemic	1
V II		•	* ^		of autoimmunity,	
		· •) hypersensitivity,	
					immune complex]
	· ·	•		•	type (Type IV)	
	hypersensitivity	, , ,		uu u_u	-7K- (-7K()	
VIII			v and vaccines	Immunologi	cal basis of graft	1

Y

()

(

(

 $\overline{}$

 $\overline{}$

 $\overline{}$

-

Aug Joselw-

rejection, clinical manifestations, immunosuppressive therapy and privileged sites. Vaccines - active and passive immunization, types of vaccines. Suggested Reading 1Kuby Immunology (2007) 6th ed., Kindt, T.L., Goldsby, R.A. and Osborne, B.A., W.H Freeman and Company (New York) 2. Immunology: A Short Course (2009) 6th ed., Coico, R and Sunshine, G., John Wiley& sons, Inc (New Jersey) 3. Janeway's Immunobiology (2012) 8th ed., Murphy, K., Mowat, A., and Weaver, C.T., Garland Science (London & New York)

Suggested (CIE) methodsTotal marks: 25 10 marks for Test10 marks for presentation along with assignment 05 marks for Class interactions

Progra	mme/Class:	Year: Third;	Semester: Fifth	
Degree		Subject: Biochemistry		
Course	e Code:	Course Title: Biostatistics a	nd Bioinformatics	
After c	ompletion of the	course the students will be able to		
•	Understand the p	principles of biological data collection, st	atistical analysis and	
	presentation			
•	Learn and appressample size.	ciate various factors that influence type	of sample collected a	nd
•	Collect, analyse	and interpret biological data using appro	priate statistical	
	toolsdevelop ma	thematical idea on biostatistics		
•	Understand scop	e of bioinformatics and applications of b	iological databases	
•		ns of molecular sequence analysis and p computer-aided drug design	nylogenetic analysis 7	Types
Credit	s:4	Core: Compulsory		
Max. 1	Marks: 100=75(1	UE)+25(CIE) Min. Passing Mark	s: As per University 1	
Unit		Topics		Total
I		and Presentation Importance of statistica		NI
		nanagement. Sampling schemes – Simpl		No.
		ng, Stratified sampling, Cluster sampling of numerical data – Nominal data, Ordin		of
		ta, continuous data; Modes of presenting		UI UI
		elative frequency	aaa. x roquonoy	Lect
II		tral tendency and analysis of variance M	ean, median, mode;	ures
		variation and standard deviation; Range a		
	range; Grouped	mean and grouped variance; Frequency	listributions; One]
		wo-way ANOVA; AMOVA; student's t t		60
		rations on events, Venn diagrams, Condi	ional Probability;	
	Probability distr			-
III		ing General concepts – Null hypothesis,		
	hypothesis, Reje	ection of hypothesis; Type I and Type II e	errors; P value and	

fral

Raelun

	sample size estimation.	
ſV	Regression and Correlation Chi Square Test – Observed and expected frequencies, Calculating p values, assumptions of a chi square goodness of	
	fit: Correlation – Two-way scatter plot, Pearson's correlation coefficient,	
	Regression – regression concepts, simple linear regression; Calculation of R2 and ρ	
V	Introduction to bioinformatics, scope and branches of bioinformatics. Applications of bioinformatics. biological data types. Biological search engine: Entrez, SRS concept and applications. Literature database: Pubmed, Biological database and its types: primary, secondary and composite databases. Nucleotide sequence databases: GenBank, EMBL and DDBJ. Protein sequence databases: UniProt, SwissProt, TrEMBL and PIR. Structural databases: PDB, CATH and SCOP PubChem, ChemBank, CCSD	
N/T	(in brief).	
VI	Sequence alignment: Pairwise sequence alignment: - Global and Local alignment, Multiple Sequence alignment (MSA): Progressive and Iterative Methods, Bioinformatics tools - BLAST, FASTA and CLUSTAL W	
VII	Molecular phylogenetic analysis: Phylogenetic tree and its components; dendrograms and cladogram. Construction of phylogenetic tree- Methods for	
	construction of phylogenetic trees: maximum parsimony, maximum likelihood and distance methods (in brief). Phylogenetic analysis using PHYLIP.	
VIII	Protein structure analysis: visualization with RasMol, Swiss PDB viewer.	
	Protein structure prediction: Steps involved in homology modelling with SWISS-MODEL. Brief list of the different types of omics databases, and	
	their applications.	
	Suggested Reading	
	-Smith DJ, Phukan S and Attwood TK, Introduction to bioinformatics San Franc on, 2007.	isco:
	vanis AD and Ouellette BF, Bioinformatics: a practical guide to the analysis of g	enes
and p	roteins (3rd ed.), Hoboken: John Wiley & Sons, Inc., 2005.	
	Suggested Continuous Internal Evaluation (CIE) methods	
	marks: 25	
	arks for Test arks for presentation along with assignment	
	arks for Class interactions	

05 marks for Class interactions

Program/Class: Degree	Year: Third	Semester: Fifth
5	Subject:Biochemistry	
Course Code:	Course Title: Immunolo	gyand Biostatistics and
		Constant States

from

~

1

0

-

-

0

-

0

-

0

0

 \sim

 $\overline{}$

 \sim

 $\widehat{}$

 \sim

 \sim

 \sim

~

-

-

-

-

Laster (

0		
~		
<u> </u>	Cred Max.	its: M
0		
~		
-	•	1
~	•	p F
~	•	A
	•	d A
2	{	ð
-	•	F
0		
~		
<u> </u>		
-		
\sim		
\sim	Prog Degr	rar ee
~	Cou	rse
2	After	
\sim	•	l
-	•	(
	•	Į
0	•	τ
-		~
	Crea	lits
-	Max	. M

 \bigcirc

H	Bioinformatics Lab.	
bredits: 2	Core: Compulsory	
lax. Marks: 100=75(UE)+25(CIE)	Min. Passing Marks: As per University	norms
		Total
Τοι	pics	[
		No.
	om blood and macrophages from	of
peritoneal cavity or spleen.Purification of immunoglobu	ilins.	
• Assays based on precipitatio diffusion (ODD) and Mancir	n reactions - Ouchterlony double ni radial immunodiffusion.	hrs.
• Assays based on agglutination & passive agglutination.	on reactions - Blood typing (active)	60
Enzyme linked immune-sort	oent assay (ELISA).	
		[

Programme/Class:	Year: Third	Semester:Sixth	
Degree	Subject:Biochemistry		
Course Code:	Course Title:Basi	c Microbiology	
After successful comple	tion of the course, student will	be able to:	
 Understand the 	basics of microbiology and micr	robial classification	
Culture different	t bacteria and know how to pres	serve them	
Understand cult	uring of viruses and viral patho	genesis	Ì
Understand gene	eral characteristics and classific	ation of algae, fungi and protoz	zoa
Retrieve and use	e cotemporary information relat	ed to microbial world	
Credits:4	Core: Compu	lsory	
Max. Marks: 100=75(UE)+25(CIE) Min. Pass	ing Marks: As per University 1	lorms
Unit	Topics		Total
	lopment of Microbiology: Deve		ļ
	ntaneous generation vs. biogen		No.
	oek, Louis Pasteur, Robert Ko		Í
i i õ	of microorganisms in fermenta		of
	of various microbiological tec		
	Establishment of fields of	֥	Lect
	rough the work of Paul Ehrlic	h, Elie Metchnikoff, Edward	ures
Jenner			
II Diversity of M	licrobial world: Binomial No	menclature, Whittaker's five	

Lachur ? ø

kingdom and Carl Woese's three kingdom classification systems and their 60 utility. Difference between prokaryotic and eukaryotic microorganisms. General characteristics of different groups: acellular microorganisms (Viruses, Viroids, Prions) and Cellular microorganisms (Bacteria, Algae, Fungi and Protozoa) with emphasis on distribution and occurrence. morphology, mode of reproduction and economic importance. Ш Viruses, viroids and prions: An introduction to viruses with special reference to the structure and replication of the following: Poxvirus, Poliovirus, HIV, T4 and λ phage, lytic and lysogenic cycles. IV Bacteria: An account of typical eubacteria, chlamydiae& rickettsiae (obligate intracellular parasites), mycoplasma, and archaebacteria (extremophiles). Applications of bacteria in industry, environment and food. v Algae: History of phycology; General characteristics of algae including occurrence, thallus organization, algae cell ultra structure, pigments, flagella, evespot food reserves and vegetative, asexual and sexual reproduction. Applications of Algae in agriculture, industry, environment and food. VĪ Fungi: Historical developments in the field of Mycology, significant contributions of eminent mycologists. General characteristics of fungi including habitat, distribution, nutritional requirements, fungal cell ultrastructure, thallus organization and aggregation, fungal wall structure and synthesis, asexual reproduction, sexual reproduction, heterokaryosis, heterothallism and parasexual mechanism. Economic Importance of Fungi in Agriculture, environment, Industry, medicine, food, biodeterioration, mycotoxins VII Protozoa: General characteristics with special reference to Amoeba VIII Scope of Microbiology Suggested Reading 1. Atlas RM. (1997). Principles of Microbiology. 2nd edition. W M.T.Brown Publishers. 2. Pelczar MJ, Chan ECS and Krieg NR. (1993). Microbiology. 5th edition. McGraw Hill Book Company Suggested Continuous Internal Evaluation (CIE) methods Total marks: 25 10 marks for Test 10 marks for presentation along with assignment 05 marks for Class interactions

Programme/Class:	Year: Third	Semester:Sixth
Degree	Subject:Biochem	у
Course Code:	Cour	Fitle: Clinical Biochemistry
After successful comp	etion of the course,	dent will be able to:
 Acquire knowl 	edge on diagnosis, p	nosis and treatment of disorders of

July

carbohydrate, protein, lipid and nucleic acid metabolism.

- Comprehend renal, liver and gastric function tests, and how they are employed in systematic diagnosis of diseases
- Acquire hands-on clinical laboratory training in estimating glucose, cholesterol, urea, creatinine and total protein from blood and urine.

Credi	ts:4 Core: Compulsory	
Max.	Marks: 100=75(UE)+25(CIE) Min. Passing Marks: As per University r	orms
Unit	Topics	Total
I	Introduction: Organization of clinical laboratory, Introduction to instrumentation and automation in clinical biochemistry laboratories safety regulations and first aid. General comments on specimen collection, types of specimen for biochemical analysis. Precision, accuracy, quality control, precautions and limitations	No. of
II	Evaluation of biochemical changes in diseases: Basic hepatic, renal and cardiovascular physiology. Biochemical symptoms associated with disease and their evaluation. Diagnostic biochemical profile	Lect ures
III	Assessment of glucose metabolism in blood: Clinical significance of variations in blood glucose. Diabetes mellitus.	60
IV	Lipid profile: Composition and functions of lipoproteins. Clinical significance of elevated lipoprotein.	
V	Liver function testsFunctions of the liver and classification of LFTs. Abnormalities in bile pigment metabolism: differential diagnosis of jaundice (hemolytic, hepatic and obstructive)	
VI	Gastric function tests: collection and examination of gastric contents after stimulation. Errors in collection of samples. Fractional test meal analysis and its interpretation, and tubeless gastric analysis	
VII	Renal function tests and urine analysis: Use of urine strip / dipstick method for urine analysis.	
VIII	Tests for cardiovascular diseases: Involvement of enzymes in diagnostics of heart disease including aspartate transaminase, isoenzymes of creatine kinase and lactate dehydrogenase and troponin	
1Med (2010 2. Me II (20 3. Me Mosb 4. Ex	ested Reading ical Laboratory Technology - a Procedure Manual for Routine Diagnostic Test), Mukherjee, K.L., Tata Mc Graw-Hill Publishing Company Limited (New Del edical Laboratory Technology - a Procedure Manual for Routine Diagnostic Te 10), Mukherjee, K.L., Tata Mc Graw – Hill Publishing Company Ltd. (New Del edical Biochemistry (2005) 2nd ed., Baynes, J.W. and Dominiczak, M.H., I y Ltd. (Philadelphia), perimental Biochemistry: A Student Companion (2005) Rao, B.S. and Deshpa ternational Pvt. Ltd. (New Delhi),	hi). sts VoI. hi) Elsevier
	Suggested Continuous Internal Evaluation (CIE) methods marks: 25 arks for Test	

10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Program/Class: Degree

Year: Third

Reelwr:-

Semester:Sixth

	C Li d Di di di	
	Subject:Biochemistry	
Course Code:	Course Title: Microbiology and Clinical	
	BiochemistryLab.	
Credits: 2	Core: Compulsory	
Max. Marks: 100=75(UE)+25(CIE)	Min. Passing Marks: As per University no	orms
	Topics	Total
 Microbiology Laboratory Pra 	ctices and Biosafety.	
	plications of important instruments (biological cubator, BOD incubator, hot air oven, light	No.
*	of culture media for bacterial cultivation	of
 Study of different shapes of t slides/ pictographs 	oacteria, fungi, algae, protozoa using permanent	hrs.
 Staining of bacteria using Graduateria 	am stain	
 Isolation of pure cultures of b 	pacteria by streaking method.	[]
 Estimation of CFU count 		60
 Collection of blood and stora 	ge.	
 Separation and storage of ser 	um.	
 Estimation of blood glucose 	by glucose oxidase peroxidase method	ļ
 Estimation of triglyceride 		
• Estimation of bilirubin (direc	t and indirect)	
Quantitative determination of	f serum creatinine and urea	
Estimation of creatine kinase	MB	

 \sim

1

 \sim

Daelme

Year: Third;

Programme/Class:

fron

Semester: Sixth

~ '

Degree		
	e Code: Course Title:Harmone Biochemistry	
After c	ompletion of the course the students will be able to	
٠	Understand the different cognate and non-cognate modes of communication be	etwee
	cells in a multi-cellular organism	
٠	Comprehend the roles of the different endocrine factors that regulate metal	olisn
	growth, ionic homeostasis, glucose homeostasis and reproductive function	
•	Describe the molecular, biochemical and physiologicalroles of all hormone, a	as we
	as the integrative regulations of their secretions in health and disease	
Credit		
Max.	Marks: 100=75(UE)+25(CIE) Min. Passing Marks: As per University n	orms
Unit	Topics	Tota
[Introduction to endocrinology: Functions of hormones and their regulation.	
	Chemical signalling - endocrine, paracrine, autocrine, intracrine and	No
	neuroendocrine mechanisms. Chemical classification of hormones, transport	
1	of hormones in the circulation and their half-lives. Hormone therapy. General	of
	introduction to Endocrine methodology	
I	Hormone mediated signalling: Hormone receptors - extracellular and	Lec
	intracellular. Receptor - hormone binding, Scatchard analysis. G protein	ure
	coupled receptors, G proteins, second messengers - cAMP, cGMP, IP3,	
	DAG, Ca2+, NO. Effector systems - adenyl cyclase, guanyl cyclase, PDE,	
	PLC. Protein kinases (PKA, PKB, PKC, PKG). Receptor tyrosine kinases -	60
	EGF, insulin, erythropoietin receptor; ras- MAP kinase cascade, JAK - STAT	
	pathway. Steroid hormone/ thyroid hormone receptor mediated gene	
	regulation. Receptor regulation and cross talk	
III	Hypothalamic and pituitary hormones: Hypothalamic - pituitary axis. Study	
	the physiological and biochemical actions of hypothalamic hormones,	
	pituitary hormones - GH, prolactin, TSH, LH, FSH, POMC peptide family,	
	oxytocin and vasopressin, feedback regulation cycle. Endocrine disorders -	
	gigantism, acromegaly, dwarfs, pigmies and diabetes insipidus.	
IV	Thyroid hormone: Thyroid gland. Biosynthesis of thyroid hormone and its	
	regulation; its physiological and biochemical action. Pathophysiology-	
	Goiter, Graves disease, cretinism, myxedema, Hashimato's disease	
V	Hormones regulating Ca2+ homeostasis: PTH, Vitamin D and calcitonin.	
	Mechanism of Ca2+ regulation and pathways involving bone, skin, liver, gut	
	and kidneys. Pathophysiology - rickets, osteomalacia, osteoporosis.	
VI	Pancreatic and GI tract hormones: Regulation of release of insulin, glucagon,	
-	gastrin, secretin, CCK, GIP, adipolectin, leptin and ghrelin. Summary of	
	hormone metabolite control of GI function. Physiological and biochemical	
	action. Pathophysiology - diabetes type I and type II	
VII	Hormones of adrenals: Aldosterone, renin angiotensin system, cortisol,	
	epinephrine and norepinephrine. Fight or flight response, stress response.	
	Pathophysiology - Addison's disease, Conn's syndrome, Cushing syndrome	
VIII	Reproductive hormones: Male and female sex hormones. Interplay of	
	hormones during reproductive cycle, pregnancy, parturition and lactation.	}
	Hormone based contraception.	
	Suggested Reading	
	ninger: Principles of Biochemistry (2013) 6th ed., Nelson, D.L. and Cox, M.M. W.H. Fr	eema
	npany (New York)	C
2. Van	der's Human Physiology (2008) 11th ed., Widmaier, E.P., Raff, H. and Strang, K.T. Mc	Graw
	~ '	
	Lecture.	
Ju		
	Dalara	
	Asic	

Jul

 $\widehat{}$

0

0

1

 \cap

 $\gamma^{(n)}$

	Hill International Publications.
	3. Endocrinology (2007) 6th ed., Hadley, M.C. and Levine, J.E. Pearson Education (New Delhi), Inc.
ļ	4. The Cell: A Molecular Approach (2009) 5th Ed. Cooper, G.M. and Hausman, R.E. ASM Press &
Į	Sunderland, (Washington DC), Sinauer Associates. (MA).
	Suggested (CIE) methods Total marks: 25
Į	10 marks for Test 10 marks for presentation along with assignment
Į	05 marks for Class interactions

Progr	amme/Class:	Year: Third	Semester:Sixth	
Degre		Subject:Biochemistry		
	se Code:	Course Title:Mole	cular Basis of Human Disease	s
After successful completion of the course, student will be able to:				
•	articulate a comp	orehensive understanding of the r	nolecular mechanisms underl	ving
	various diseases			00
•	articulate a comp	orehensive understanding of the r	nolecular mechanisms under	ving
}	various diseases	0		9 ~~~ 8
•	critically analyse	experimental data related to mo	lecular aspects of diseases.	
Credi	ts: 4	Core: Compuls	Sory	
Max.	Marks: 100=75(U		g Marks: As per University r	orms
Unit		Topics		Total
I	Nutritional disor	ders: Overview of major and mir	nor nutrient components in	
	the diet. Balance	d diet and the concept of RDA. I	Nutrient deficiencies;	No.
	Kwashiorkor and	l Marasmus, Scurvy, beriberi, pe	llagra and B12 deficiency,	
}	Xerophthalmia a	nd Night blindness, Vitamin D d	eficiency, Vitamin K	of
	deficiency. Discu	ass with relation to biochemical b	pasis for symptoms.	
II	Metabolic and L	festyle disorders: Obesity and ea	ating disorders like	Lect
}		a and Bullemia. Diabetes mellitu		ures
ļ	and the relations	hip with hypertension, obesity, h	ypothyroidism and stress.	
		disorders and Atherosclerosis-de		
ļ		in this category, understanding t		60
}	-	ages of disorder and the manager		
		yndrome- biochemistry behind th		
		stress and environment on the c mplex disorders and Cancer: Un		
111		diseases. Polygenic diseases and		
j .		ictors and genetic makeup in the		
		a transformed cell, causes and s		
{		tic growth and metastasis, Proto-		
	1 -	; Cancer causing mutations; Tun	0	
		r; Molecular approaches to canc		
1	-	renia, dementia and anxiety disor)
		nson's disease, ALS.		
IV		misfolded proteins: Introduction	to protein folding and	
		oval of misfolded proteins; etiolo		}

, von 8

101 cicur

}	Alzheimer's, Prion diseases, Huntington's Chorea, sickle cell anemia,	
}	Thalassemia	
[Monogenic diseases: In born errors in metabolism: PKU, Alkaptonuria,	
	Maple syrup urine disease; Receptor and transport defects: Cystic fibrosis,	
j	Long QT syndrome, familial hypercholesterolemia, Achondroplasia.	
	Hemoglobinopathies and clotting disorders.	
V	Classification of infectious agents: Bacteria, Viruses, protozoa and fungi.	
j –	Past and present emerging and re-emerging infectious diseases and	
	pathogens. Source, reservoir and transmission of pathogens, Antigenic shift	
j	and antigenic drift. Host parasite relationship, types of infections associated	
}	with parasitic organisms. Overview of viral and bacterial pathogenesis.	
	Infection and evasion.	
VI	Overview of diseases caused by bacteria: Detailed study of tuberculosis:	
	History, causative agent, molecular basis of host specificity, infection and	
ł	pathogenicity, Diagnostics, Therapeutics, inhibitors and vaccines. Drug	
{	resistance and implications on public health. Other bacterial diseases	
	including Typhoid, Diphtheria, Pertussis, Tetanus, Typhoid and Pneumonia.	
VII	Overview of diseases caused by Viruses: Detailed study of AIDS, history,	
{	causative agent, pathogenesis, Diagnostics, Drugs and inhibitors. Other viral	
	diseases including hepatitis, influenza, rabies, chikungunya and polio.	
VIII	Detailed study of Malaria, history, causative agents, Vectors, life cycle, Host	
}	parasite interactions, Diagnostics, Drugs and Inhibitors, Resistance, Vaccine	
	development. Other diseases including leishmaniasis, amoebiasis. Fungal	
	diseases, General characteristics. Medical importance of major groups,	
	pathogenesis, treatment	_
SUG	GESTED READINGS	
1.Pres	scott, Harley, Klein's Microbiology (2008) 7th Ed., Willey, J.M., Sherwood, L.M.,	,
Wool	verton, C.J. Mc Graw Hill International Edition (New York)	
2. Ma	andell, Douglas and Bennett S, Principles and practices of Infectious diseases, 7th	
	on, Volume, 2. Churchill Livingstone Elsevier.	
	erris Medical Microbiology: An Introduction to Infectious Diseases by Kenneth J.	
	, C. George Ray, Publisher: McGraw-Hill	
1	edical Microbiology by Patrick R. Murray, Ken S. Rosenthal, Michael A. Pfaller,	
	vier Health Sciences	
1	tbook of Biochemistry with Clinical Correlations (2011) Devlin, T.M. John Wiley	8 E
	, Inc. (New York),	
	roduction to Human Physiology (2013) 8th edition; Lauralee Sherwood. Brooks/C	Cole,
	age Learning.	
	e World of the cell, 7th edition (2009)	
	enetics (2012) Snustad and Simmons,	
1	opper, G.M. and Hausman, R.E. 2009 The Cell: A Molecular Approach. 5th edition	1.
	Press & Sunderland, Washington, D.C.; Sinauer Associates, MA.	
1	ested (CIE) methodsTotal marks: 25	
	arks for Test10 marks for presentation along with assignment arks for Class interactions	
0.5 ma		

Y

-

~

 \sim

 \sim

 \sim

 $\overline{}$

~

 \sim

~

~

 \sim

-

 \sim

 \sim

~

 \sim

 $\overline{}$

 \sim

 \sim

 \sim

 \sim

 \sim

 \sim

 \sim

~

Leiling Augur

Program/Class: Degree	Year: T	hird;	Semester:Sixth	
	Subject	:Biochemistry		
Course Code:			iochemistryandMolecul	lar
	Basis of I	Iuman Diseases	Lab.	
Credits: 2		Core: Compulso		
Max. Marks: 100	1	Min. Passing M	arks: As per University	norms
	To	pics		Tot
Glucose tolerance test				al
• Estimation of serum Ca2-	F.			
• Estimation of serum T4.				No
 HCG based pregnancy tes 	t.			
•				of
 Estimation of serum electric 				
Anthropometric measurer	nents for nor	mal and high-ris	k individuals and	hrs.
identifications for Kwashi	orkor, Maras	mus and Obesity	y .	ms.
 Estimation of glycosylate 	d hemioglobir	1		6
 Diagnostic profile for assess studies 	essment of C	VS and Diabetes	mellitus using case	60
 Permanent slides of patho 	gens. Mycob	acterium tuberci	ulosis, Leishmania,	
Plasmodium falciparum	-			
 WIDAL test 				
Gram staining				
 Acid fast staining 				
 PCR based diagnosis 				
 Dot Blot ELISA 				

fron

0

0

-

~

-

Lach

ar' Afr

Programme/Class:		Year: Fourth		Semester:Seventh	1		
FYUP		Subject:Bioche	emistry				
	se Code:		Irse Title:BiophysicalCh	emistry			
After s	7	· · · · · · · · · · · · · · · · · · ·	udent will be able to:				
•			pts of organic chemistry				
•		•	stems and solvents systems				
•			cal properties, law of therm	odynamics and ionic			
C I		ms in biochemistry					
Credi			Core: Compulsory	A			
	Marks: 100=75(UE)+25(CIE)	Min. Passing Marks	s: As per University r			
<u>Unit</u>	<u> </u>		Topics		Tota		
I			ation terms, Bronsted t				
			on-Hasselbalch equation		No.		
			, titration curves, buffers				
-		the second se	d plasma and their regula		of		
II			vents: Structure of wa		-		
		•	ter, interactions viz. ion		Lec		
	-		non-aqueous solvents, co	olligative properties	ure		
	of aqueous solutions.						
III			iles: Determination of th				
	~	A	ulation of colloidal par		60		
	surface tension, surface energy, viscosity and adsorption. Chemistry of fats						
	and oils, Emulsions and micro emulsions.						
IV	Thermodynamics: Thermodynamics Terminology of thermodynamics, First law of thermodynamics, internal energy, enthalpy of a system, heat capacity,						
		•			ļ		
			w of thermodynamics, o				
			opies, criteria for reversi		ł		
		s-Helmholtz equ	uation, Third law of	thermodynamics,			
			ntropies of elements		ł		
			d law of thermodynam	ucs in living cells,			
	chemical potential and equilibrium constant.						
1		Su	ggested reading				
1.							
	Su	ggested Continuous	s Internal Evaluation (CIE)	methods			
Total	marks: 25						
10 ma	rks for Test						
10 ma		n along with assign	ment				
	rks for Class intera	ationa					

0

Look

 Understand stru- movement of E 	letion of the course, cture of DNA and RNA NA segments in the ge lication of DNA and tra	se Title: Molecular Bio student will be able to: A together with the reasso	logy	
 After successful com Understand strumovement of E understand Rep 	letion of the course, cture of DNA and RNA NA segments in the ge lication of DNA and tra	student will be able to: A together with the reasso	logy	
 Understand stru- movement of E understand Rep 	cture of DNA and RNA NA segments in the ge lication of DNA and tra	A together with the reasso		
movement of Eunderstand Rep	NA segments in the generation of DNA and tra		-1-41 - 1-1	
 understand Rep 	lication of DNA and tra		ciation kinetics and	
			containg of the mPN	Aand
			ocessing of pre-mixin.	m anu
 understand var 		is in prokaryotes and euka	motor along with rom	latio
of gene express		is in prokaryones and eaka	a yotes along with reg	uiatio
Credits:4		Core: Compulsory		
Max. Marks: 100=7		Min. Passing Marks	As ner University n	orms
Unit		Topics	<u>into por onit oubity in</u>	Tota
		: DNA supercoiling: su	per-elical density	1012
,		Genome complexity: D		No.
		ox, repetitive and uniqu		1.01
		cteria, eukaryotes, orga		of
		, single stranded and		
		ation DNA into chron	1	Lec
	<u> </u>	and euchromatin, DNA	1	ures
-	e inactivation)		, , , , , ,	
		ases, synthesis of lea	ding and lagging	
		otes and eukaryotes: in		60
1	· · ·	olication, segregation o	· •	
		nd RNA processing:		
		odification: splicing, a		
capping, poly	A addition, editing, rl	RNA processing, base n	nodification, tRNA	
processing a	nd modifications	Franslation: Genetic	code, Translation	
initiation, elc	ngation, termination,	, ribosome recycling i	n prokaryotes and	
eukaryotes, I	RES in eukaryotes:	Codon, anticodon inte	eraction, ribosome	
profiling, co-	ranslational protein for	olding. Non-ribosome p	rotein synthesis.	
III DNA repair a	nd recombination: Py	rimidine dimer, nick ar	nd gap in DNA, AP	
		, base excision and r		j
		. translation DNA syntl		
Y-family of	olymerases in bacte	ria and eukaryotes, No	n-homologous end	j
	· · · · · · · · · · · · · · · · · · ·	mbination, Holliday m		
		ion, mating type swite		
^	-	and Cre-Lox recombina	tion, transposition-	[
	sons and retroposons			1
		Promoters and enhance		
		n of lac and trp op		
		ti-sigma factors, anti-		
		n bacteria, Concept o		ĺ
		on: RNA binding prote		
		Riboswitch, RNA. Inte		1
-	•	st translational gene r	_	1
	1 ^	sphorylation, methyla	ation, acetylation,	
adenylation,			··	
1.411	00	gested reading	r rzalala Dala sa	d P
LAIberts, Bruce, A	exander Johnson, Jul	lian Lewis, Martin Raf	i, Keith Roberts, ar	ia Pe

Har

0

0

1

 \sim

loolmer /

Ø
Walter. Molecular Biology of the Cell. New York: Garland Science, 2002.
2. Cooper, Geoffrey M, and Robert E. Hausman. The Cell: A Molecular Approach. Sunderland, MA: Sinauer Associates, 2013.
3. Krebs, Jocelyn E, Benjamin Lewin, Stephen T. Kilpatrick, and Elliott S. Goldstein. Lewin's Genes Xi. Burlington, Mass: Jones & Bartlett Learning, 2014.
4. Lodish, Harvey F, Arnold Berk, Chris Kaiser, Monty Krieger, Anthony Bretscher, Hidde L. Ploegh, Angelika Amon, and Kelsey C. Martin. Molecular Cell Biology. 2016.
5. Maniatis, Tom, Edward F. Fritsch, and Joseph Sambrook. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor: Cold Spring Harbor Laboratory, 1982. Suggested Continuous Internal Evaluation (CIE) methods
Total marks: 25 10 marks for Test 10 marks for Test

05 marks for Class interactions

Programme/Class: Year: Four		rth	Semester:Seventh	<u> </u>		
FYUP Subject:Bi			liochemistry			
Cour	Course Code: Course Title: Genetic Engineering					
After	successful comple	etion of the c	course, student will be able to): 		
•			reagents used in recombinant I	0 , ()		
٠	understand biolog systems.	gy of plasmid	s, and phages and their uses in c	lesigning different cloni	ng	
	•	c operane ope	d their application into designing	avaragian vootors for		
•			idamentals of eukaryotic expres			
Credi			Core: Compulsory	<u>sion systems.</u>		
	Marks: 100=75(UE)+25(CIE)		s: As per University r	orms	
Unit		01) 20(011	Topics		Total	
l	rDNA Technol	ogy:Restrict	ion enzymes, restriction m	odification system	2000	
			polymerase I and Klenow		No.	
			nscriptase, polynucleotide			
	phosphatase.		X ~ X V	,	of	
II	Cloning Method	lologies: Pla	smids and plasmid vectors, n	ew generation of		
	plasmid cloning	vectors, La	mbda vectors - insertion and	replacement	Lect	
	vectors, cosmids. High-capacity cloning vectors - YACs, BACs and PACs.					
	Shuttle vectors. Expression vectors - pMAL, GST, pET-based vectors.					
			ors. Protein purification: His-			
			ning in animal cells: SV-40, v	accinia/bacculo and	60	
TTT			ed vectors, Ti vectors.		(
Ш			rary preparation:Methods f			
	v		aries – vectors used, gen			
			NA for library construction		ļ	
	· · · ·		n the identification and anal n interaction and yeast two h	-		
		•	ximizing protein expression		}	
			tion to siRNA, siRNA tech			
	•	•	tors, principle and application		}	
			, vaccines, diagnostic probe			

freih

Realmy

	Gene therapy
IV	Transgenic Technology: Gene knockout and knock-in, Generation of
	transgenic animals and its application, Cre-loxP recombination technology,
	Homologus and Non-homologus recombination, Gene isolation, gene
	transfer systems, Ti plasmid, plant virus vectors, electroporation,
	microinjection, microprojectile technology, particle bombardment,
	Generation of transgenic plants and its application, Plant tissue culture,
[anther and pollen culture, protoplast culture, protoplast fusion, cybrid,
	somatic hybrid, somatic embryogenesis, embryo rescue, application of
}	recombinant DNA technology in photosynthetic efficacy, nitrogen fixation
	efficiency and resistance to environmental stresses.
Recor	nmended Books:
1.	T.A. Brown, Gene Cloning and DNA Analysis: An Introduction. Fifth Edition
	WileyBlackwell, 2006.
2.	S.B. Primrose, R.M. Twyman and R.W.Old; Principles of Gene Manipulation. 6t
}	Edition, S.B. University Press, 2011.
3.	J. Sambrook and D.W. Russel; Molecular Cloning: A Laboratory Manual, Vols 1-3,
1	CSHL, 2001.
	Suggested Continuous Internal Evaluation (CIE) methods
1	marks: 25
	urks for Test
1	arks for presentation along with assignment
05 ma	arks for Class interactions

Progra	amme/Class:	Year: Fourth			Semester: Sevent	h
FYUP		Subject:Bioc	hemi	stry		
Cours	e Code:	C	ours	e Title:Plant Biochemis	stry	
After s	uccessful comple	tion of the cou	rse, s	tudent will be able to:		(
•	Understand struct	ure and function	of pl	ant cell including cell wai	ll, plasmodesmata and	d ∫
	secretary systems			I I		}
•	-	arvesting compl	exes,	dark reactions regulation	of photosynthesis C3	, C4,
	and CAM plants.					
٠	-	-	ation	and ammonia assimilatio	n, translocation of inc	organic
	and organic solut	•				
•	Understandplant]	normones and the		le in plant and tissue cult	ure	
Credi	Credits:4 Core: Compulsory					
Max.	Marks: 100=75(UE)+25(CIE)		Min. Passing Marks:	As per University	lorms
Unit				Topics		Total
I	Plant cell: Stru	cture, function	and	mechanisms of action	of phytochromes,	
					an'	
					($\overline{\wedge}$
\sim					(M

Jul

(Style halen!

2 1 \sim ~ --

cryptochromes and phototropins, stomatal movement, transpiration. No. photoperiodism and biological clocks, plant movement. Photosynthesis: Photosynthetic apparatus, pigments of photosynthesis, Calvin cycle (C3 of plants), Hatch slack (C4 plants) & CAM pathways of carbon reduction and its regulation, Structure, function and regulation of RUBISCO, Crassulacean Lect acid metabolism ures П Plants photorespiration: Photorespiration pathway and significance, cyanide resistance, relationship between photosynthesis, photorespiration, Unit-II III Phytohormones: Biosynthesis, transport, physiological effects, mode of 60 action and signal transduction of auxins, gibberlic acid, abscisic acid, ethylene and cytokinins in germination, embryogenesis, growth and development of plant. Nitrogen metabolism: Nitrogen fixation, nitrogenise complex, biochemistry and genetics of nitrogen fixation and ammonium assimilation, structure of 'NIF' genes and its regulation, structural features of nitrate reductase and nitrite reductase, regulation of nitrate and sulphate assimilation. Secondary plant metabolites: Nature, distribution, biosynthesis and function of plant metabolites, biosynthesis of nicotine. Biochemistry of plant toxins, phytohemagglutinins, lathyrogens, nitriles, protease inhibitors, protein toxins, role of secondary metabolites in chemical defence. IV Plant stress physiology: Plant stress, plant responses to abiotic and biotic stresses, salinity, water, heat, chilling, anaerobiosis, heavy metals, radiations and their impact on plant growth and metabolism, mechanisms of resistance to biotic stress and abiotic stress, antioxidative defence mechanism. Plant defence: Genetic basis of plant-pathogen interactions, antio R-Avr gene interactions and isolation of R genes, hypersensitive response (HR), systemic acquired resistance (SAR) and induced systemic resistance (ISR). Suggested reading 1. Introduction of Plant Biochemistry, by Goodwin T. W. and E.I. Mercer, Pergamon Press, Oxford, 1983. 2. Plant Physiology, 5th Edition, by Lincoln Taiz and Eduardo Zeiger, Amazon press, 2012 3. Introduction of Plant Biochemistry, by Goodwin T. W. and E.I. Mercer, PergamonPress, Oxford. Buchanan BB, Gruissem W& Jones RL. 2000. 4. Biochemistry and Molecular Biology of Plants. 2nd Ed. John Wiley. Dey PM & Harborne JB. 1997. 5. Plant Biochemistry. Academic Press. Heldt HS. 1997. Plant Biochemistry and Molecular Biology. Oxford Univ. Press Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25 10 marks for Test10 marks for presentation along with assignment 05 marks for Class interactions

wh

PRACTICAL

(Credits: 4)

- Introduction to basic laboratory instruments like pH meter, colorimeter, single pan balance calibration, centrifuge etc.
- Prepration of Acetate and phosphate buffer system and validate the Henderson-Hasselbach equation.
- Estimation of reducing sugar concentration by DNS method
- Estimation total sugar concentration by DPA
- Isolation and characterization of casein from milk.
- Studies on lipids: Acid value, saponification value and iodine number
- Extraction of Genomic DNA from Plant, Animal tissues, blood and microbes,
- Qualitative and quantitative analysis of nucleic acids,
- Cloning and construction of Recombinant clones,
- Preparation of cloning DNA: PCR,
- Restriction endonuclease digestion, Ligation,
- Competent cell preparation,
- DNA transformation,
- Characterization of recombinant clone:
- , Plasmid DNA isolation,
- RFLP analysis

Ranking (A

- Induction of hydrolytic enzymes proteinases /amylases/lipase during
- germination
 Estimation of carotene/ascorbic acid/phenols/tannins in fruits and vegetables
- Separation of photosynthetic pigments by TLC
- Culture of plant plants (explants)

Programme/Class:	Year: Fourth	Semester:Eighth	-		
FYUP	Subject:Biochemistry				
Course Code: Course Title: Analytical chemistry					
	tion of the course, student will be a	ble to:			
	iteria of choosing appropriate strategie		of		
different biologica					
Know the application	bility, advantages, limitations and sour	ces of error of current analytical			
	gh an understanding of the working pri		e		
underlying bioche	emical basis				
 Enable independe 	nt conduct of biochemical analyses and	l instrument evaluations in the			
laboratory and to	link the practical applications to the lea	rned theory			
Credits:4	Core: Compulsor	у			
Max. Marks: 100=75(1	UE)+25(CIE) Min. Passing	Marks: As per University norms	S		
Unit	Topics	Tota	al		
I Technology Fun	damentals (Life Science): General	scheme for purification of			
bio-components.	Methods for studying cells and	organelles. Sub-cellular No.			
-	d marker enzymes. Methods for ly	ę			
	microbial cell. Ultrafiltration, freeze drying and fractional precipitation. Use o				
	of detergents in isolation of membrane proteins.				
Ŭ Ŭ	Ĩ	Lec	t		
Centrifugation:U	Iltracentrifugation - velocity	and buoyant density ures			
determination.	Density gradient, centrifugati		-		
determination.		, Hereit			
	Basic principles and application	ns of ion-exchange, gel 60			

Lachur Auf

	filtration, partition, affinity, HPLC and reverse phase chromatography, gas chromatography, TLC, Paper chromatography. Chromatofocussing	
	Electrophoresis: Basic techniques, poly acrylamide/ starch/ agarose gel electrophoresis, use of SDS/urea, isoelectric focusing, capillary electrophoresis. Pulse field gel electrophoresis 2D elctrophoresis. Northern and southern and western blotting techniques	
III	Tracer Techniques: Principles and applications of tracer techniques in biology, Measurement of alpha, beta and gamma radiations. Radiation dosimetry, Types of Radioactive decay; rate of radioactive decay; radioactive isotopes and their half -lives; Units of radioactivity; Measurement of radioactivity-methods based upon gas ionization & excitation; quenching emulsion counting, Geiger Mueller counter Autoradiography; Specific activity of radioisotope; Safety aspects; Radiation Dosimetry; Detection and measurement of isotopes and application of isotopes in biological science, Autoradiography.	
IV	Spectroscopy:Principles and Biological Applications of Biophysical Techniques: X-ray diffraction, fluorescence, UV, visible, CD/ORD, NMR and Mass spectroscopy, atomic absorption spectroscopy. Plasma emission spectroscopy, scanning and transmission electron microscopy, Atomic force microscopy.	
Reco	mmended Books	
1. Pro	otein Purification by Robert Scopes, Springer Verlag Publication, 1982	
2.Too	ols in Biochemistry David Cooper	
3. Me	ethods of Protein and Nucleic acid Research, Osterman Vol I – III	
4. Ce	entrifugation D. Rickwood	
5. Pra	actical Biochemistry, V th edition, Keith, Wilson and Walker.	
6. W Cana	etter L.R and Canstabel eds. (1982) Plant Tissue Culture methods. Natl. Res. Co da.	ouncil,
	farris. P., Scragg, A.H., Standford, A and Fowlew M.W eds. (1986) Second bolism in plant tissue cultures. Cambridge UnivPress, Cambridge.	ondary
	omamine A., Misawa M and Dicosmo F eds. (1991) Plant cell culture in Japan. Ltd, Tokyo.	CMC
10 m	Suggested Continuous Internal Evaluation (CIE) methods marks: 25 marks for Test marks for presentation along with assignment	

 \bigcirc

200

(((

0

0

0

0

0

 \cap

(

0

0

-

1

 \sim

1

 \hat{r}

Lacher Auf

Progr FYUP	amme/Class:	Year: Fourth- Subject:Biochemist	17/	Semester:Eighth	
	e Code:		Title:Bioenergetics		
		etion of the course, stu			
•	Flow of carbon, r of basic laws of t Role of ATP as a cellular processes The basics of bio	utrogen and oxygen in thermodynamics. universal currency of en	he environment besides hergy in biological system ion reactions. Students s	m and also the ATP d	-
•	Fundamentals of	ATP generation and prot	on motive force involve	ed in production of A	ΓP.
Credi	ts:4	Cor	e: Compulsory		
Max.	Marks: 100=75(UE)+25(CIE) N	Ain. Passing Marks:	As per University n	orms
Unit		To	pics		Tota
I	of a mitochon Electron-Transf	oenergetics:Oxidative drion, Membrane-Bo er Chain, effects of in oxidative phosphoryl	phosphorylation Bioo ound electron carrier hibitors of electron tra	rs, Mitochondrial ansfer Agents that	No. of
	for ATP Synthe Regulation of mitochondria, Mitochondrial g	ondrial ATP synthase esis, , Malate-aspartate oxidative phosphoryl Mitochondria evolv genes: Their origin and genes, The role of mi	e shuttle, Glycerol 3- ation, Heat generation yed from endosyn d the effects of mutation	phosphate shuttle, on by uncoupled abiotic Bacteria, ions, Mutations in	Lect ures
II	photosystems photochemical photophosphory Phosphorylation Carbohydrate b cycle (C3) and starch and sucre Nitrogen fixatio	Harvesting light ylation, Light absorpt in the thylakoid me event: Light-driven ylation, A proton g n, Chloroplasts Even biosynthesis in plants Hatch-Slack pathway ose, Synthesis of cell y on:Types of nitrogen on. Nitrogen cycle	tion, Reaction center embrane. Hill reacting electron flow AT gradient couples electron olved from endosyn and bacteria, Photor , (C4) CAM pathway vall polysaccharides. fixation, Symbiotic a	s organization of ion, The central TP synthesis by ectron flow and mbiotic bacteria, espiration, Calvin s, Biosynthesis of und non-symbiotic	
IV –	enzyme comp electron donors regulation, Mic	lex,azoferredoxin an s and mechanism of robial fertilizers. Mari ion of toxicants: Upta	ntrogen reduction, I ne nitrogen fixation.	in. Physiological Nif genes and its	
	lipophilic con (conjugation) Monooxygenas oxidases, bi microorganism	npounds, reactions and phase III (tra es, Cytochrome P450 otransformation in s, biotransformation n biotransformation, sy	phase I (modifica nsport) and their) (CYP) enzymes an animals, biotra in fungi, biotransfor	tions) phase II interrelationships, d Mixed function unsformation in	

for

~

~

 \cap

 \cap

 \cap

 $\widehat{}$

(((((((()

 \cap

 $\widehat{}$

 $\hat{}$

0

 $\widehat{}$

 $\widehat{}$

 \cap

 $\widehat{}$

 \sim

~

 \sim

0

 \sim

~

(((

 $\overline{}$

Redun

1. Biochemistry by Lubert Stryer 4th Edition.

2. Lehninger's Principles of Biochemistry by Nelson and Cox.

3. Biological nitrogen fixation by Frans J. de Bruijn.

4. Detoxication Mechanisms by R.T.Williams 2nd Edition

Suggested Continuous Internal Evaluation (CIE) methods

Total marks: 25 10 marks for Test 10 marks for presentation along with assignment 05 marks for Class interactions

amme/Class:	Year: Second;		Semester:Eighth		
ma	Subject:Biochem	istry			
Course Code: Course Title:Microbial Biochemistry					
successful comple	tion of the course,	student will be able to:			
appreciate the enti	re spectrum of micro	scopic life forms - from re	elatively simple, smai	ll but	
unique viruses to l	oacteria				
understand the fin	e mechanism of regu	lation of gene expression.			
ts:4	C	ore: Compulsory			
Marks: 100=75(U	JE)+25(CIE)	Min. Passing Marks:	As per University r	orms	
	, , , , , , , , , , , , , , , , , , , ,			Total	
Brief history of	fermentation; Fern	nentation- general conc	epts, Applications		
Component parts of a fermentation process. of					
Types of fermentations: Aerobic and anaerobic fermentation, Submerged and					
solid-state ferm	entation; Factors	affecting submerged	and solid state	Lect	
fermentation; Su	ubstrates used in S	SSF and its advantages	s; Culture media-	ures	
		0	,	1	
sterilization					
Process develop	ment:Optimization	of a process, Classic	cal and statistical	60	
	na e Code: successful comple appreciate the enti- unique viruses to l understand the fin ts:4 Marks: 100=75(U Brief history of of fermentation enzymes, meta Component parts Types of fermen solid-state ferm fermentation; Su types, componen- sterilization Process develop methods of optin enzyme immob	ma Subject:Biochem ie Code: Course successful completion of the course, appreciate the entire spectrum of microunique viruses to bacteria understand the fine mechanism of regulation understand the fine mechanism of regulation understand the fine mechanism of regulation ts:4 C Marks: 100=75(UE)+25(CIE) C Brief history of fermentation; Ferrer of fermentation; Range of ferrenzymes, metabolites, recombin C Course C Marks: 100=75(UE)+25(CIE) C Brief history of fermentation; Ferrer of fermentation; Range of ferrenzymes, metabolites, recombin C Course C Types of fermentations: Aerobic and solid-state fermentation; Factors fermentation; Substrates used in types, components and formulation sterilization Process development: Optimization Process development: Optimization; Scale u	ma Subject:Biochemistry de Code: Course Title:Microbial Bioch Successful completion of the course, student will be able to: appreciate the entire spectrum of microscopic life forms - from reunique viruses to bacteria understand the fine mechanism of regulation of gene expression. ts:4 Core: Compulsory Marks: 100=75(UE)+25(CIE) Min. Passing Marks: Topics Brief history of fermentation; Fermentation- general conc of fermentation; Range of fermentation process- Mi enzymes, metabolites, recombinant products, transfo Component parts of a fermentation process. Types of fermentation; Factors affecting submerged fermentation; Substrates used in SSF and its advantages types, components and formulations. Sterilization: Batc sterilization Process development:Optimization of a process, Classic	ma Subject:Biochemistry ie Code: Course Title:Microbial Biochemistry successful completion of the course, student will be able to: appreciate the entire spectrum of microscopic life forms - from relatively simple, smalunique viruses to bacteria understand the fine mechanism of regulation of gene expression ts:4 Core: Compulsory Marks: 100=75(UE)+25(CIE) Min. Passing Marks: As per University r Enter fine metation; Fermentation-general concepts, Applications of fermentation; Range of fermentation process- Microbial biomass, enzymes, metabolites, recombinant products, transformation process; Component parts of a fermentation process. Types of fermentation; Factors affecting submerged and solid state fermentation; Substrates used in SSF and its advantages; Culture media-types, components and formulations. Sterilization: Batch and continuous sterilization Process development:Optimization of a process, Classical and statistical methods of optimization; Scale up of bioprocess General concept of a	

frailar

Escher, A

IV Aeration and agitation:Effect of aeration and agitation on fermentation, Oxygen requirement and oxygen supply, Oxygen transfer kinetics; Determination of KLa value; Effect of agitation and microbial biomass on KLa value; Newtonian and non-Newtonian fluids; Foam and antifoams, their effect on oxygen transfer; Fermentation economics.

Recommended Books

1. Stanbury, P. F., Whitaker and Hall, A. S. J., Principles of Fermentation Technology. Butterworth-Heinemann

2. Shuler, M.L. and Karg, I F., Bioprocess Engineering Basic Concepts, Prentice Hall.

3. Vogel, H.C. Todaro, C.L. and Todaro C.C., Fermentation and Biochemical Engineering Handbook: Principles, Process Design, and Equipment, Noyes Data Corporation/ Noyes Publications.

4. Crueger W. and Crueger, A., Biotechnology. A Textbook of Industrial Microbiology, Sinauer Associates.

5. Reed, G., Prescott and Dunn's Industrial Microbiology, AVI publication

6. Casida L. E. J. R., Industrial Microbiology, New Age (1968) Suggested Continuous Internal Evaluation (CIE) methods Total marks: 25

10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Year: Fourth **Programme/Class:** Semester: Eighth FYUP Subject: Biochemistry Course Code: Course Title: Fundamentals of Research Methodology After successful completion of the course, student will be able to: Learn and follow the ethical guidelines while doing research avoid plagiarism in research publications. Write a comprehensive literature review on a given research topic. ٠ Write a crisp research proposal or research project independently Credits:4 Core: Compulsory Max. Marks: 100=75(UE)+25(CIE) Min. Passing Marks: As per University norms Unit Topics Total Introduction to Research Methods: Types of research philosophies (positivist, Ι interpretivist, pragmatist and realistic), various steps in scientific research, No.

from

Lacher Auf

	Scientific temper and attitude, Experimental Design, Defining Controls, deductive and inductive reasoning; reductionist and holistic approaches of	of
	scientific research	
II –	Scientific Methodology: Problem identification, Critical thinking, hypothesis	Lect
	formulation and hypothesis testing (Power analysis) Difference between	ures
	hypothesis, reasoning, theory and scientific law	
III	Research in Practice: Literature review, Journals, Conference Proceedings,	
	Journal Impact factor, Citation Index, h, g, h-g index, Reading a scientific	60
	paper. Research Ethics: Social implications of research, bio-safety issues	ł
	Animal experimentation ethics, wild-life ethics and human experimentation	
	ethics. Data fudging and plagiarism: Use of URKUND, Turnitin and	
	iThenticate software	
IV	Scientific Communication: Importance and Types, Logical organization of	
	scientific data and documentation. Different modes of scientific	
	communication: Scientific Writing, Report Writing: Types of research	
	reports, Research Proposal writing, Research paper writing, Thesis writing.	
	Oral forms of scientific Communication-Popular and Scientific talks, Poster	
	presentations, Organizing Presentation Material, Use of audio-visual aids in	
	presentation. Elements of presentation preparation. Legal forms of	
	communication in science: Plagiarism and scientific misconduct, Ethics in	
D	scientific communication, patent submissions.	
Reco	mmended Books	
1 L	ohn W. Creswell, Research Design: Qualitative, Quantitative, and Mixed M	Aethods
	oaches, 4th Edition SAGE	vieulous
дррі	Vaches, 411 Edition SAGE	
2 SF	aran B. Merriam & Elizabeth J. Tisdell, Qualitative Research: A Guide to Des	ion and
	ementation, 4th Edition, John Wiley & Sons	ign and
	Suggested Continuous Internal Evaluation (CIE) methods	
Total	marks: 25	

Total marks: 25

10 marks for Test

10 marks for presentation along with assignment

05 marks for Class interactions

Ja

0 0

-

-

-

0

-

0

-

-

 \cap

-

--

1

0

0 0

 \sim

A ir

Rocher

PRACTICAL

(Credits: 4)

- Separation and identification of amino acids by TLC.
- Separation of amino acids/ sugars by paper chromatography.
- Verification of Beer- Lambert Law.
- Extraction of lipids from tissue and their separation using TLC.
- Separation of proteins by SDS-PAGE.
- Isolation of casein from milk and its quantification Estimation of carotenoids in the given leaf sample
- Fermentative production and quantification of: Antibiotics penicillin/ streptomycin/tetracycline
- Fermentative production and quantification of Organic acid: citric acid/ lactic acid/ acetic acid
- Fermentative production and quantification of Enzymes: amylase/ protease/urease
- Fermentative production and quantification of Amino acid: glutamic acid/ lysine
- Fermentative production and quantification of Vitamins: B12/ B2/vitamin C Ethyl alcohol/ fruit wine and calculation of fermentation efficiency
- Review writing/ Report writing
- Scientific presentation of research paper from reputed journal

Lasher

Nie

- *Students who want to opt for 4- year UG Degree, Honours with research (and has secured 75% marks in the subject in all the three years) will choose any three of the above given theory papers of VII and VIII semester (4 credits each) along with research project (4 credits each) in both VII & VIII Semester.
- *Under the Apprenticeship/Internship embedded UG degree programme the student should complete a Training Programme (1200 hrs. -40 credits) through NATS or from equivalent Organisation. The degree holder has to do 1year PG Programme. It is purely optional for the University, to run and give this degree.

Jun

Joshon Ant